These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17259287)

  • 1. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.
    Busch F; Hüner NP; Ensminger I
    Plant Physiol; 2007 Mar; 143(3):1242-51. PubMed ID: 17259287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased air temperature during simulated autumn conditions impairs photosynthetic electron transport between photosystem II and photosystem I.
    Busch F; Hüner NP; Ensminger I
    Plant Physiol; 2008 May; 147(1):402-14. PubMed ID: 18375598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus.
    Fréchette E; Chang CY; Ensminger I
    Tree Physiol; 2016 Mar; 36(3):311-24. PubMed ID: 26846980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.
    Chang CY; Fréchette E; Unda F; Mansfield SD; Ensminger I
    Plant Physiol; 2016 Oct; 172(2):802-818. PubMed ID: 27591187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the phenology of photosynthesis among eastern white pine provenances in response to warming.
    Fréchette E; Chang CY; Ensminger I
    Glob Chang Biol; 2020 Sep; 26(9):5217-5234. PubMed ID: 32396692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.
    Stinziano JR; Way DA
    Plant Cell Environ; 2017 Aug; 40(8):1296-1316. PubMed ID: 28102913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.
    Savitch LV; Ivanov AG; Krol M; Sprott DP; Oquist G; Huner NP
    Plant Cell Physiol; 2010 Sep; 51(9):1555-70. PubMed ID: 20630988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions.
    Ensminger I; Schmidt L; Lloyd J
    New Phytol; 2008; 177(2):428-442. PubMed ID: 18181961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings.
    Chang CY; Unda F; Zubilewich A; Mansfield SD; Ensminger I
    Front Plant Sci; 2015; 6():165. PubMed ID: 25852717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment.
    Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E
    Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).
    Stinziano JR; Hüner NP; Way DA
    Tree Physiol; 2015 Dec; 35(12):1303-13. PubMed ID: 26543154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.
    Fréchette E; Wong CY; Junker LV; Chang CY; Ensminger I
    J Exp Bot; 2015 Dec; 66(22):7309-23. PubMed ID: 26386258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal changes in temperature response of photosynthesis and its contribution to annual carbon gain in Daphniphyllum humile, an evergreen understorey shrub.
    Katahata SI; Han Q; Naramoto M; Kakubari Y; Mukai Y
    Plant Biol (Stuttg); 2014 Mar; 16(2):345-53. PubMed ID: 23731172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid response of nonstructural carbohydrate allocation and photosynthesis to short photoperiod, low temperature, or elevated CO
    Chang CY; Unda F; Mansfield SD; Ensminger I
    Physiol Plant; 2023; 175(6):e14095. PubMed ID: 38148184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic seasonal changes in photosynthesis systems in leaves of Asarum tamaense, an evergreen understorey herbaceous species.
    Wada N; Kondo I; Tanaka R; Kishimoto J; Miyagi A; Kawai-Yamada M; Mizokami Y; Noguchi K
    Ann Bot; 2023 Apr; 131(3):423-436. PubMed ID: 36579472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.
    Corcuera L; Morales F; Abadía A; Gil-Pelegrín E
    Tree Physiol; 2005 May; 25(5):599-608. PubMed ID: 15741152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir.
    Verhoeven A; Osmolak A; Morales P; Crow J
    Tree Physiol; 2009 Mar; 29(3):361-74. PubMed ID: 19203960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine).
    Logan BA; Combs A; Myers K; Kent R; Stanley L; Tissue DT
    Tree Physiol; 2009 Jun; 29(6):789-97. PubMed ID: 19364706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan.
    Tanaka C; Nakano T; Yamazaki JY; Maruta E
    Plant Physiol Biochem; 2015 Jan; 86():147-154. PubMed ID: 25500451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.