These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17259980)

  • 1. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation.
    van Woerden GM; Harris KD; Hojjati MR; Gustin RM; Qiu S; de Avila Freire R; Jiang YH; Elgersma Y; Weeber EJ
    Nat Neurosci; 2007 Mar; 10(3):280-2. PubMed ID: 17259980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophosphorylation of alphaCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction.
    Kimura R; Silva AJ; Ohno M
    Learn Mem; 2008 Nov; 15(11):837-43. PubMed ID: 18984565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and region-specific requirements of αCaMKII in spatial and contextual learning.
    Achterberg KG; Buitendijk GH; Kool MJ; Goorden SM; Post L; Slump DE; Silva AJ; van Woerden GM; Kushner SA; Elgersma Y
    J Neurosci; 2014 Aug; 34(34):11180-7. PubMed ID: 25143599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.
    Bruinsma CF; Schonewille M; Gao Z; Aronica EM; Judson MC; Philpot BD; Hoebeek FE; van Woerden GM; De Zeeuw CI; Elgersma Y
    J Clin Invest; 2015 Nov; 125(11):4305-15. PubMed ID: 26485287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice.
    Nogami T; Beppu H; Tokoro T; Moriguchi S; Shioda N; Fukunaga K; Ohtsuka T; Ishii Y; Sasahara M; Shimada Y; Nishijo H; Li E; Kitajima I
    Hippocampus; 2011 Jun; 21(6):678-87. PubMed ID: 20865721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.
    Daily JL; Nash K; Jinwal U; Golde T; Rogers J; Peters MM; Burdine RD; Dickey C; Banko JL; Weeber EJ
    PLoS One; 2011; 6(12):e27221. PubMed ID: 22174738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model.
    Ciarlone SL; Grieco JC; D'Agostino DP; Weeber EJ
    Neurobiol Dis; 2016 Dec; 96():38-46. PubMed ID: 27546058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.
    Steinkellner T; Yang JW; Montgomery TR; Chen WQ; Winkler MT; Sucic S; Lubec G; Freissmuth M; Elgersma Y; Sitte HH; Kudlacek O
    J Biol Chem; 2012 Aug; 287(35):29627-35. PubMed ID: 22778257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory.
    Irvine EE; Vernon J; Giese KP
    Nat Neurosci; 2005 Apr; 8(4):411-2. PubMed ID: 15778710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of altered HDAC activity recovers behavioural abnormalities in a mouse model of Angelman syndrome.
    Jamal I; Kumar V; Vatsa N; Shekhar S; Singh BK; Sharma A; Jana NR
    Neurobiol Dis; 2017 Sep; 105():99-108. PubMed ID: 28576709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome.
    Weeber EJ; Jiang YH; Elgersma Y; Varga AW; Carrasquillo Y; Brown SE; Christian JM; Mirnikjoo B; Silva A; Beaudet AL; Sweatt JD
    J Neurosci; 2003 Apr; 23(7):2634-44. PubMed ID: 12684449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the synthetic neurosteroid ganaxolone on seizure activity and behavioral deficits in an Angelman syndrome mouse model.
    Ciarlone SL; Wang X; Rogawski MA; Weeber EJ
    Neuropharmacology; 2017 Apr; 116():142-150. PubMed ID: 27986596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of αCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the medial prefrontal cortex.
    Ma J; Duan Y; Qin Z; Wang J; Liu W; Xu M; Zhou S; Cao X
    Neuroscience; 2015 Dec; 310():528-40. PubMed ID: 26415772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the mechanisms of Angelman Syndrome.
    Narasimhan K
    Nat Neurosci; 2007 Mar; 10(3):275. PubMed ID: 17318219
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lovastatin suppresses hyperexcitability and seizure in Angelman syndrome model.
    Chung L; Bey AL; Towers AJ; Cao X; Kim IH; Jiang YH
    Neurobiol Dis; 2018 Feb; 110():12-19. PubMed ID: 29097328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome.
    Mulherkar SA; Jana NR
    Neurobiol Dis; 2010 Dec; 40(3):586-92. PubMed ID: 20696245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice.
    Ohno M; Tseng W; Silva AJ; Disterhoft JF
    Learn Mem; 2005; 12(3):211-5. PubMed ID: 15897256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophosphorylation of αCaMKII affects social interactions in mice.
    Harda Z; Dzik JM; Nalberczak-Skóra M; Meyza K; Łukasiewicz K; Łęski S; Radwanska K
    Genes Brain Behav; 2018 Jun; 17(5):e12457. PubMed ID: 29316205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability.
    Ohno M; Sametsky EA; Silva AJ; Disterhoft JF
    Eur J Neurosci; 2006 Apr; 23(8):2235-40. PubMed ID: 16630070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.