BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17260480)

  • 1. [Research progresses on electroactive and electrically conductive polymers for tissue engineering scaffolds].
    Li MY; Bidez P; Guterman-Tretter E; Guo Y; MacDiarmid AG; Lelkes PI; Yuan XB; Yuan XY; Sheng J; Li H; Song CX; Yen W
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2006 Dec; 28(6):845-8. PubMed ID: 17260480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing polyaniline-poly(2-acrylamido-2-methylpropane sulfonic acid) biocompatibility with 3T3 fibroblasts.
    Bayer CL; Trenchard IJ; Peppas NA
    J Biomater Sci Polym Ed; 2010; 21(5):623-34. PubMed ID: 20338096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application.
    Zhang QS; Yan YH; Li SP; Feng T
    Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Baharvand H; Kiani S; Al-Deyab SS; Ramakrishna S
    J Tissue Eng Regen Med; 2011 Apr; 5(4):e17-35. PubMed ID: 21413155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.
    Qazi TH; Rai R; Boccaccini AR
    Biomaterials; 2014 Nov; 35(33):9068-86. PubMed ID: 25112936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous-conductive chitosan scaffolds for tissue engineering, 1. Preparation and characterization.
    Wan Y; Wu H; Wen D
    Macromol Biosci; 2004 Sep; 4(9):882-90. PubMed ID: 15468297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion.
    Jeong SI; Jun ID; Choi MJ; Nho YC; Lee YM; Shin H
    Macromol Biosci; 2008 Jul; 8(7):627-37. PubMed ID: 18401867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendronized polyaniline nanotubes for cardiac tissue engineering.
    Moura RM; de Queiroz AA
    Artif Organs; 2011 May; 35(5):471-7. PubMed ID: 21595714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrrole doped with 2 peptide sequences from laminin.
    Stauffer WR; Cui XT
    Biomaterials; 2006 Apr; 27(11):2405-13. PubMed ID: 16343612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components.
    Gilmore KJ; Kita M; Han Y; Gelmi A; Higgins MJ; Moulton SE; Clark GM; Kapsa R; Wallace GG
    Biomaterials; 2009 Oct; 30(29):5292-304. PubMed ID: 19643473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review paper: progress in the field of conducting polymers for tissue engineering applications.
    Bendrea AD; Cianga L; Cianga I
    J Biomater Appl; 2011 Jul; 26(1):3-84. PubMed ID: 21680608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun scaffold tailored for tissue-specific extracellular matrix.
    Teo WE; He W; Ramakrishna S
    Biotechnol J; 2006 Sep; 1(9):918-29. PubMed ID: 16941439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
    Wang L; Wu Y; Hu T; Guo B; Ma PX
    Acta Biomater; 2017 Sep; 59():68-81. PubMed ID: 28663141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of conductive polymer-based nanofiber scaffolds for tissue engineering applications.
    Gu BK; Kim MS; Kang CM; Kim JL; Park SJ; Kim CH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7621-6. PubMed ID: 25942837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive polymers: towards a smart biomaterial for tissue engineering.
    Balint R; Cassidy NJ; Cartmell SH
    Acta Biomater; 2014 Jun; 10(6):2341-53. PubMed ID: 24556448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroactive electrospun polyaniline/poly[(L-lactide)-co-(ε-caprolactone)] fibers for control of neural cell function.
    Bhang SH; Jeong SI; Lee TJ; Jun I; Lee YB; Kim BS; Shin H
    Macromol Biosci; 2012 Mar; 12(3):402-11. PubMed ID: 22213547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets.
    Mahmoudifard M; Soleimani M; Hatamie S; Zamanlui S; Ranjbarvan P; Vossoughi M; Hosseinzadeh S
    Biomed Mater; 2016 Mar; 11(2):025006. PubMed ID: 26962722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.