BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17260859)

  • 1. Wavelet methods for spike detection in mouse renal sympathetic nerve activity.
    Brychta RJ; Tuntrakool S; Appalsamy M; Keller NR; Robertson D; Shiavi RG; Diedrich A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):82-93. PubMed ID: 17260859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients.
    Brychta RJ; Shiavi R; Robertson D; Diedrich A
    J Neurosci Methods; 2007 Mar; 160(2):359-67. PubMed ID: 17083982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2932-5. PubMed ID: 19163320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike detection using the continuous wavelet transform.
    Nenadic Z; Burdick JW
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):74-87. PubMed ID: 15651566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike detection in extracellular recordings by hybrid blind beamforming.
    Natora M; Franke F; Obermayer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4636-41. PubMed ID: 21096235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography.
    Diedrich A; Charoensuk W; Brychta RJ; Ertl AC; Shiavi R
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):41-50. PubMed ID: 12617523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach.
    Salmanpour A; Brown LJ; Shoemaker JK
    J Neurosci Methods; 2010 Nov; 193(2):343-55. PubMed ID: 20831884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and opportunities in processing muscle sympathetic nerve activity with wavelet denoising techniques: detecting single action potentials in multiunit sympathetic nerve recordings in humans.
    Zhang Q; Liu Y; Brown L; Shoemaker JK
    Auton Neurosci; 2007 Jul; 134(1-2):92-105. PubMed ID: 17412648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three spike detectors dedicated to single unit action potentials of the auditory nerve.
    Bourien J; Ruel J; Senhadji L; Puel JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1430-3. PubMed ID: 18002234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hilbert transform assisted complex wavelet transform for neuroelectric signal analysis.
    Olkkonen H; Pesola P; Olkkonen J; Zhou H
    J Neurosci Methods; 2006 Mar; 151(2):106-13. PubMed ID: 16143401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of wavelet-based action potential detection from the NeuroAmp and the Iowa Bioengineering Nerve Traffic Analysis system.
    Thrall SF; D'Souza AW; Abrahamson-Durant B; Vianna LC; Limberg JK; Macefield VG; Foster GE
    J Neurophysiol; 2024 Jun; 131(6):1168-1174. PubMed ID: 38629146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis.
    Lai HY; Chen YY; Lin SH; Lo YC; Tsang S; Chen SY; Zhao WT; Chao WH; Chang YC; Wu R; Shih YY; Tsai ST; Jaw FS
    J Neural Eng; 2011 Jun; 8(3):036003. PubMed ID: 21464520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of peripheral nerve signals through blind separation.
    Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5428. PubMed ID: 18003236
    [No Abstract]   [Full Text] [Related]  

  • 15. Wavelet transform for real-time detection of action potentials in neural signals.
    Quotb A; Bornat Y; Renaud S
    Front Neuroeng; 2011; 4():7. PubMed ID: 21811455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathetic nerve traffic and circulating norepinephrine levels in RGS2-deficient mice.
    Tank J; Obst M; Diedrich A; Brychta RJ; Blumer KJ; Heusser K; Jordan J; Luft FC; Gross V
    Auton Neurosci; 2007 Oct; 136(1-2):52-7. PubMed ID: 17507294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.
    Yang Y; Boling CS; Kamboh AM; Mason AJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):946-55. PubMed ID: 25955990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG.
    Chen D; Wan S; Bao FS
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):413-425. PubMed ID: 28113594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the robustness of EC-PC spike detection method for online neural recording.
    Zhou Y; Wu T; Rastegarnia A; Guan C; Keefer E; Yang Z
    J Neurosci Methods; 2014 Sep; 235():316-30. PubMed ID: 25088692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally efficient neural feature extraction for spike sorting in implantable high-density recording systems.
    Kamboh AM; Mason AJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):1-9. PubMed ID: 22899586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.