These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17260859)

  • 41. Blind source separation of peripheral nerve recordings.
    Tesfayesus W; Durand DM
    J Neural Eng; 2007 Sep; 4(3):S157-67. PubMed ID: 17873415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic analysis of wavelet denoising methods for neural signal processing.
    Baldazzi G; Solinas G; Del Valle J; Barbaro M; Micera S; Raffo L; Pani D
    J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33142283
    [No Abstract]   [Full Text] [Related]  

  • 44. A robust method for spike sorting with automatic overlap decomposition.
    Wang GL; Zhou Y; Chen AH; Zhang PM; Liang PJ
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1195-8. PubMed ID: 16761848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fractal dimension analysis for spike detection in low SNR extracellular signals.
    Salmasi M; Büttner U; Glasauer S
    J Neural Eng; 2016 Jun; 13(3):036004. PubMed ID: 27064604
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimized wavelets for blind separation of nonstationary surface myoelectric signals.
    Farina D; Lucas MF; Doncarli C
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):78-86. PubMed ID: 18232349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wavelet analysis in a canine model of gastric electrical uncoupling.
    de SobralCintra RJ; Tchervensky IV; Dimitrov VS; Mintchev MP
    Physiol Meas; 2004 Dec; 25(6):1355-69. PubMed ID: 15712715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of sympathetic nerve activity normalization procedures in conscious rabbits.
    Burke SL; Lim K; Moretti JL; Head GA
    Am J Physiol Heart Circ Physiol; 2016 May; 310(9):H1222-32. PubMed ID: 26921439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Basis pursuit sparse decomposition using tunable-Q wavelet transform (BPSD-TQWT) for denoising of electrocardiograms.
    Srinivasulu A; Sriraam N
    Phys Eng Sci Med; 2022 Sep; 45(3):817-833. PubMed ID: 35771386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sympathetic activity and the underlying action potentials in sympathetic nerves: a simulation.
    Tang X; Chander AR; Schramm LP
    Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1504-13. PubMed ID: 12920060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.
    Du P; Kibbe WA; Lin SM
    Bioinformatics; 2006 Sep; 22(17):2059-65. PubMed ID: 16820428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and evaluation of two automated methods for quantifying human muscle sympathetic nerve activity.
    Rothman JL; Easty AC; Frecker RC; Floras JS
    Comput Biol Med; 1991; 21(4):221-35. PubMed ID: 1764931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stationary wavelet transform and higher order statistical analyses of intrafascicular nerve recordings.
    Qiao S; Torkamani-Azar M; Salama P; Yoshida K
    J Neural Eng; 2012 Oct; 9(5):056014. PubMed ID: 23010694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Matching a wavelet to ECG signal.
    Takla GF; Nair BG; Loparo KA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1686-9. PubMed ID: 17946061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design methodology of a new wavelet basis function for fetal phonocardiographic signals.
    Chourasia VS; Tiwari AK
    ScientificWorldJournal; 2013; 2013():505840. PubMed ID: 23766693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wavelet-based analysis of MMN responses in children.
    Burger M; Hoppe U; Kummer P; Lohscheller J; Eysholdt U; Döllinger M
    Biomed Tech (Berl); 2007 Feb; 52(1):111-6. PubMed ID: 17313345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-Time Fourier Transform Based Spike Detection of Spontaneous Peripheral Nerve Activity.
    Shafer B; Yaghouby F; Vasudevan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2418-2421. PubMed ID: 30440895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multidimensional, mapping-based complex wavelet transforms.
    Fernandes FC; van Spaendonck RL; Burrus CS
    IEEE Trans Image Process; 2005 Jan; 14(1):110-24. PubMed ID: 15646876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wavelet denoising as a post-processing enhancement method for non-invasive foetal electrocardiography.
    Baldazzi G; Sulas E; Urru M; Tumbarello R; Raffo L; Pani D
    Comput Methods Programs Biomed; 2020 Oct; 195():105558. PubMed ID: 32505973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.