These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17260902)

  • 41. An in vitro kinetic method for detection of precipitation of poorly soluble drugs.
    Wu Z; Tucker IG; Razzak M; Medlicott NJ
    Int J Pharm; 2005 Nov; 304(1-2):1-3. PubMed ID: 16198520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new method for liposome preparation using a membrane contactor.
    Jaafar-Maalej C; Charcosset C; Fessi H
    J Liposome Res; 2011 Sep; 21(3):213-20. PubMed ID: 20860451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation.
    Kanzer J; Hupfeld S; Vasskog T; Tho I; Hölig P; Mägerlein M; Fricker G; Brandl M
    J Pharm Biomed Anal; 2010 Nov; 53(3):359-65. PubMed ID: 20447794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution.
    Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S
    Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient entrapment of poorly water-soluble pharmaceuticals in hybrid nanoparticles.
    Ishihara T; Goto M; Kanazawa H; Higaki M; Mizushima Y
    J Pharm Sci; 2009 Jul; 98(7):2357-63. PubMed ID: 18979534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Alkyl Chain Length and Unsaturation of the Phospholipid on the Physicochemical Properties of Lipid Nanoparticles.
    Funakoshi Y; Iwao Y; Noguchi S; Itai S
    Chem Pharm Bull (Tokyo); 2015; 63(9):731-6. PubMed ID: 26329867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanosizing: a formulation approach for poorly-water-soluble compounds.
    Merisko-Liversidge E; Liversidge GG; Cooper ER
    Eur J Pharm Sci; 2003 Feb; 18(2):113-20. PubMed ID: 12594003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents.
    Kawakami K; Oda N; Miyoshi K; Funaki T; Ida Y
    Eur J Pharm Sci; 2006 May; 28(1-2):7-14. PubMed ID: 16406526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs.
    Kim JY; Kim S; Pinal R; Park K
    J Control Release; 2011 May; 152(1):13-20. PubMed ID: 21352878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.
    van Drooge DJ; Hinrichs WL; Visser MR; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):220-9. PubMed ID: 16427226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyethylene glycols in oral and parenteral formulations--A critical review.
    Gullapalli RP; Mazzitelli CL
    Int J Pharm; 2015 Dec; 496(2):219-39. PubMed ID: 26581774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclosporin nanoparticulate lipospheres for oral administration.
    Bekerman T; Golenser J; Domb A
    J Pharm Sci; 2004 May; 93(5):1264-70. PubMed ID: 15067702
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new combination approach of CI jet and QESD to formulate pH-susceptible amorphous solid dispersions.
    Kumar S; Linehan B; Tseng YC
    Int J Pharm; 2014 May; 466(1-2):368-74. PubMed ID: 24657557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Melt extrusion with poorly soluble drugs.
    Shah S; Maddineni S; Lu J; Repka MA
    Int J Pharm; 2013 Aug; 453(1):233-52. PubMed ID: 23178213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid.
    Park JW; Yun JM; Lee ES; Youn YS; Kim KS; Oh YT; Oh KT
    Arch Pharm Res; 2013 Nov; 36(11):1369-76. PubMed ID: 23780798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrasound influence on the solubility of solid dispersions prepared for a poorly soluble drug.
    Pereira SV; Colombo FB; de Freitas LA
    Ultrason Sonochem; 2016 Mar; 29():461-9. PubMed ID: 26548840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres.
    Quintanar-Guerrero D; Tamayo-Esquivel D; Ganem-Quintanar A; Allémann E; Doelker E
    Eur J Pharm Sci; 2005 Oct; 26(2):211-8. PubMed ID: 16046105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug.
    Ueda K; Higashi K; Yamamoto K; Moribe K
    Eur J Pharm Sci; 2015 Sep; 77():79-89. PubMed ID: 26036231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.
    Tho I; Liepold B; Rosenberg J; Maegerlein M; Brandl M; Fricker G
    Eur J Pharm Sci; 2010 Apr; 40(1):25-32. PubMed ID: 20172027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs.
    Kipp JE
    Int J Pharm; 2004 Oct; 284(1-2):109-22. PubMed ID: 15454302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.