These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 17260967)
21. The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Greggio E; Taymans JM; Zhen EY; Ryder J; Vancraenenbroeck R; Beilina A; Sun P; Deng J; Jaffe H; Baekelandt V; Merchant K; Cookson MR Biochem Biophys Res Commun; 2009 Nov; 389(3):449-54. PubMed ID: 19733152 [TBL] [Abstract][Full Text] [Related]
22. The biology and pathobiology of LRRK2: implications for Parkinson's disease. Moore DJ Parkinsonism Relat Disord; 2008; 14 Suppl 2():S92-8. PubMed ID: 18602856 [TBL] [Abstract][Full Text] [Related]
23. Identification of the autophosphorylation sites of LRRK2. Kamikawaji S; Ito G; Iwatsubo T Biochemistry; 2009 Nov; 48(46):10963-75. PubMed ID: 19824698 [TBL] [Abstract][Full Text] [Related]
24. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1. Stafa K; Trancikova A; Webber PJ; Glauser L; West AB; Moore DJ PLoS Genet; 2012; 8(2):e1002526. PubMed ID: 22363216 [TBL] [Abstract][Full Text] [Related]
25. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Nguyen AP; Moore DJ Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279 [TBL] [Abstract][Full Text] [Related]
26. Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease. Greggio E Biochem Soc Trans; 2012 Oct; 40(5):1058-62. PubMed ID: 22988865 [TBL] [Abstract][Full Text] [Related]
27. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Liu M; Dobson B; Glicksman MA; Yue Z; Stein RL Biochemistry; 2010 Mar; 49(9):2008-17. PubMed ID: 20146535 [TBL] [Abstract][Full Text] [Related]
28. LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease. Xiong Y; Dawson VL; Dawson TM Biochem Soc Trans; 2012 Oct; 40(5):1074-9. PubMed ID: 22988868 [TBL] [Abstract][Full Text] [Related]
29. Leucine-rich repeat kinase 2: relevance to Parkinson's disease. Guo L; Wang W; Chen SG Int J Biochem Cell Biol; 2006; 38(9):1469-75. PubMed ID: 16600664 [TBL] [Abstract][Full Text] [Related]
30. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sheng Z; Zhang S; Bustos D; Kleinheinz T; Le Pichon CE; Dominguez SL; Solanoy HO; Drummond J; Zhang X; Ding X; Cai F; Song Q; Li X; Yue Z; van der Brug MP; Burdick DJ; Gunzner-Toste J; Chen H; Liu X; Estrada AA; Sweeney ZK; Scearce-Levie K; Moffat JG; Kirkpatrick DS; Zhu H Sci Transl Med; 2012 Dec; 4(164):164ra161. PubMed ID: 23241745 [TBL] [Abstract][Full Text] [Related]
31. Revisiting the Roco G-protein cycle. Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655 [TBL] [Abstract][Full Text] [Related]
32. Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity. Shu Y; Ming J; Zhang P; Wang Q; Jiao F; Tian B PLoS One; 2016; 11(3):e0149739. PubMed ID: 26930193 [TBL] [Abstract][Full Text] [Related]
33. Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions. Drolet RE; Sanders JM; Kern JT J Neurogenet; 2011 Dec; 25(4):140-51. PubMed ID: 22077787 [TBL] [Abstract][Full Text] [Related]
34. Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics. Wu CX; Liao J; Park Y; Reed X; Engel VA; Hoang NC; Takagi Y; Johnson SM; Wang M; Federici M; Nichols RJ; Sanishvili R; Cookson MR; Hoang QQ J Biol Chem; 2019 Apr; 294(15):5907-5913. PubMed ID: 30796162 [TBL] [Abstract][Full Text] [Related]
35. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Funayama M; Hasegawa K; Ohta E; Kawashima N; Komiyama M; Kowa H; Tsuji S; Obata F Ann Neurol; 2005 Jun; 57(6):918-21. PubMed ID: 15880653 [TBL] [Abstract][Full Text] [Related]
36. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. Yun HJ; Kim H; Ga I; Oh H; Ho DH; Kim J; Seo H; Son I; Seol W J Biochem; 2015 Jun; 157(6):485-95. PubMed ID: 25605758 [TBL] [Abstract][Full Text] [Related]
37. First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein. Guaitoli G; Gilsbach BK; Raimondi F; Gloeckner CJ Biochem Soc Trans; 2016 Dec; 44(6):1635-1641. PubMed ID: 27913672 [TBL] [Abstract][Full Text] [Related]
38. A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry. Leveridge M; Collier L; Edge C; Hardwicke P; Leavens B; Ratcliffe S; Rees M; Stasi LP; Nadin A; Reith AD J Biomol Screen; 2016 Feb; 21(2):145-55. PubMed ID: 26403521 [TBL] [Abstract][Full Text] [Related]
39. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations. Mills RD; Mulhern TD; Cheng HC; Culvenor JG Biochem Soc Trans; 2012 Oct; 40(5):1086-9. PubMed ID: 22988870 [TBL] [Abstract][Full Text] [Related]
40. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Sancho RM; Law BM; Harvey K Hum Mol Genet; 2009 Oct; 18(20):3955-68. PubMed ID: 19625296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]