These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17261514)

  • 1. Methane oxidation in termite hindguts: absence of evidence and evidence of absence.
    Pester M; Tholen A; Friedrich MW; Brune A
    Appl Environ Microbiol; 2007 Mar; 73(6):2024-8. PubMed ID: 17261514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of methanotrophic bacteria from termite gut.
    Reuss J; Rachel R; Kämpfer P; Rabenstein A; Küver J; Dröge S; König H
    Microbiol Res; 2015 Oct; 179():29-37. PubMed ID: 26411892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts.
    Pester M; Brune A
    ISME J; 2007 Oct; 1(6):551-65. PubMed ID: 18043656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Termites facilitate methane oxidation and shape the methanotrophic community.
    Ho A; Erens H; Mujinya BB; Boeckx P; Baert G; Schneider B; Frenzel P; Boon N; Van Ranst E
    Appl Environ Microbiol; 2013 Dec; 79(23):7234-40. PubMed ID: 24038691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes.
    Tholen A; Brune A
    Environ Microbiol; 2000 Aug; 2(4):436-49. PubMed ID: 11234932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia.
    Eggleton P; Homathevi R; Jones DT; MacDonald JA; Jeeva D; Bignell DE; Davies RG; Maryati M
    Philos Trans R Soc Lond B Biol Sci; 1999 Nov; 354(1391):1791-802. PubMed ID: 11605622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?
    Brauman A; Majeed MZ; Buatois B; Robert A; Pablo AL; Miambi E
    PLoS One; 2015; 10(12):e0144340. PubMed ID: 26658648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.).
    Schmitt-Wagner D; Brune A
    Appl Environ Microbiol; 1999 Oct; 65(10):4490-6. PubMed ID: 10508080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.).
    Ngugi DK; Brune A
    Environ Microbiol; 2012 Apr; 14(4):860-71. PubMed ID: 22118414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The challenge of estimating global termite methane emissions.
    Law SJ; Allison SD; Davies AB; Flores-Moreno H; Wijas BJ; Yatsko AR; Zhou Y; Zanne AE; Eggleton P
    Glob Chang Biol; 2024 Jun; 30(6):e17390. PubMed ID: 38899583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Concentration Profiles at the Oxic-Anoxic Interface: a Microsensor Study of the Hindgut of the Wood-Feeding Lower Termite Reticulitermes flavipes (Kollar).
    Ebert A; Brune A
    Appl Environ Microbiol; 1997 Oct; 63(10):4039-46. PubMed ID: 16535716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils.
    Martineau C; Pan Y; Bodrossy L; Yergeau E; Whyte LG; Greer CW
    FEMS Microbiol Ecol; 2014 Aug; 89(2):257-69. PubMed ID: 24450397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Termite mounds mitigate half of termite methane emissions.
    Nauer PA; Hutley LB; Arndt SK
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13306-13311. PubMed ID: 30478040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.
    Shrestha M; Abraham WR; Shrestha PM; Noll M; Conrad R
    Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diet is the primary determinant of bacterial community structure in the guts of higher termites.
    Mikaelyan A; Dietrich C; Köhler T; Poulsen M; Sillam-Dussès D; Brune A
    Mol Ecol; 2015 Oct; 24(20):5284-95. PubMed ID: 26348261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites.
    Brauman A; Kane MD; Labat M; Breznak JA
    Science; 1992 Sep; 257(5075):1384-7. PubMed ID: 17738281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.
    Lee SW; Im J; Dispirito AA; Bodrossy L; Barcelona MJ; Semrau JD
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):389-403. PubMed ID: 19787350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Diversity and function of symbiotic microbes in the gut of lower termites].
    Yang H; Peng JX; Liu KY; Hong HZ
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):496-9. PubMed ID: 16933630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages.
    Shi Y; Huang Z; Han S; Fan S; Yang H
    J Basic Microbiol; 2015 Aug; 55(8):1021-8. PubMed ID: 25709053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetogenesis from H2 plus CO2 by spirochetes from termite guts.
    Leadbetter JR; Schmidt TM; Graber JR; Breznak JA
    Science; 1999 Jan; 283(5402):686-9. PubMed ID: 9924028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.