These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17261809)

  • 1. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.
    Barillà D; Carmelo E; Hayes F
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1811-6. PubMed ID: 17261809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics.
    Dobruk-Serkowska A; Caccamo M; Rodríguez-Castañeda F; Wu M; Bryce K; Ng I; Schumacher MA; Barillà D; Hayes F
    J Biol Chem; 2012 Dec; 287(51):42545-53. PubMed ID: 23093445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.
    Machón C; Fothergill TJ; Barillà D; Hayes F
    J Mol Biol; 2007 Nov; 374(1):1-8. PubMed ID: 17920627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.
    Barillà D; Rosenberg MF; Nobbmann U; Hayes F
    EMBO J; 2005 Apr; 24(7):1453-64. PubMed ID: 15775965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation.
    McLeod BN; Allison-Gamble GE; Barge MT; Tonthat NK; Schumacher MA; Hayes F; Barillà D
    Nucleic Acids Res; 2017 Apr; 45(6):3158-3171. PubMed ID: 28034957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein.
    Caccamo M; Dobruk-Serkowska A; Rodríguez-Castañeda F; Pennica C; Barillà D; Hayes F
    Front Mol Biosci; 2020; 7():108. PubMed ID: 32613008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation.
    Schumacher MA; Ye Q; Barge MT; Zampini M; Barillà D; Hayes F
    J Biol Chem; 2012 Jul; 287(31):26146-54. PubMed ID: 22674577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of the ParG segregation protein to different affinity DNA sites.
    Zampini M; Derome A; Bailey SE; Barillà D; Hayes F
    J Bacteriol; 2009 Jun; 191(12):3832-41. PubMed ID: 19376860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation.
    Barillà D; Hayes F
    Mol Microbiol; 2003 Jul; 49(2):487-99. PubMed ID: 12828644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis.
    Wagner K; Moolenaar GF; Goosen N
    DNA Repair (Amst); 2011 May; 10(5):483-96. PubMed ID: 21393072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure.
    Golovanov AP; Barillà D; Golovanova M; Hayes F; Lian LY
    Mol Microbiol; 2003 Nov; 50(4):1141-53. PubMed ID: 14622405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression.
    Carmelo E; Barillà D; Golovanov AP; Lian LY; Derome A; Hayes F
    J Biol Chem; 2005 Aug; 280(31):28683-91. PubMed ID: 15951570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the ATPase active site of P1 ParA reveals multiple active forms essential for plasmid partition.
    Vecchiarelli AG; Havey JC; Ing LL; Wong EO; Waples WG; Funnell BE
    J Biol Chem; 2013 Jun; 288(24):17823-31. PubMed ID: 23632076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segrosome assembly at the pliable parH centromere.
    Wu M; Zampini M; Bussiek M; Hoischen C; Diekmann S; Hayes F
    Nucleic Acids Res; 2011 Jul; 39(12):5082-97. PubMed ID: 21378121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein diversity confers specificity in plasmid segregation.
    Fothergill TJ; Barillà D; Hayes F
    J Bacteriol; 2005 Apr; 187(8):2651-61. PubMed ID: 15805511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily.
    Hayes F
    Mol Microbiol; 2000 Aug; 37(3):528-41. PubMed ID: 10931346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch.
    Leonard TA; Butler PJ; Löwe J
    EMBO J; 2005 Jan; 24(2):270-82. PubMed ID: 15635448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
    Marquenet E; Richet E
    J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for ADP-mediated transcriptional regulation by P1 and P7 ParA.
    Dunham TD; Xu W; Funnell BE; Schumacher MA
    EMBO J; 2009 Jun; 28(12):1792-802. PubMed ID: 19461582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the ATP-binding site of helicase IV from Escherichia coli.
    Dubaele S; Lourdel C; Chène P
    Biochem Biophys Res Commun; 2006 Mar; 341(3):828-36. PubMed ID: 16442499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.