These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 17262211)

  • 1. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Arabinose transport and catabolism in yeast.
    Fonseca C; Romão R; Rodrigues de Sousa H; Hahn-Hägerdal B; Spencer-Martins I
    FEBS J; 2007 Jul; 274(14):3589-3600. PubMed ID: 17627668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate.
    Carvalho W; Silva SS; Converti A; Vitolo M
    Biotechnol Bioeng; 2002 Jul; 79(2):165-9. PubMed ID: 12115432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts.
    Fonseca C; Neves AR; Antunes AM; Noronha JP; Hahn-Hägerdal B; Santos H; Spencer-Martins I
    Appl Environ Microbiol; 2008 Mar; 74(6):1845-55. PubMed ID: 18245253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation.
    Fredlund E; Broberg A; Boysen ME; Kenne L; Schnürer J
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):403-9. PubMed ID: 14600792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of brewer's spent grains to bioethanol.
    White JS; Yohannan BK; Walker GM
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.
    Mussatto SI; Dragone G; Roberto IC
    Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled transient changes reveal differences in metabolite production in two Candida yeasts.
    Granström T; Leisola M
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):511-6. PubMed ID: 11954799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.
    Silva JP; Mussatto SI; Roberto IC
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis.
    Walther T; Hensirisak P; Agblevor FA
    Bioresour Technol; 2001 Feb; 76(3):213-20. PubMed ID: 11198172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of pentoses by yeasts.
    Gong CS; Claypool TA; McCracken LD; Maun CM; Ueng PP; Tsao GT
    Biotechnol Bioeng; 1983 Jan; 25(1):85-102. PubMed ID: 18548540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Formation of xylitol in Candida guilliermondii 2581 culture].
    Zagustina NA; Rodionova NA; Mestechkina NM; Shcherbukhin VD; Bezborodov AM
    Prikl Biokhim Mikrobiol; 2001; 37(5):573-7. PubMed ID: 11605470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18.
    Zhang J; Geng A; Yao C; Lu Y; Li Q
    Bioresour Technol; 2012 Feb; 105():134-41. PubMed ID: 22196071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
    Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.