These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17262759)

  • 1. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies.
    Kattumuri V; Katti K; Bhaskaran S; Boote EJ; Casteel SW; Fent GM; Robertson DJ; Chandrasekhar M; Kannan R; Katti KV
    Small; 2007 Feb; 3(2):333-41. PubMed ID: 17262759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific ligation of DNA-modified gold nanoparticles activated by the restriction enzyme StyI.
    Kanaras AG; Wang Z; Hussain I; Brust M; Cosstick R; Bates AD
    Small; 2007 Jan; 3(1):67-70. PubMed ID: 17294471
    [No Abstract]   [Full Text] [Related]  

  • 3. Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles.
    Kannan R; Rahing V; Cutler C; Pandrapragada R; Katti KK; Kattumuri V; Robertson JD; Casteel SJ; Jurisson S; Smith C; Boote E; Katti KV
    J Am Chem Soc; 2006 Sep; 128(35):11342-3. PubMed ID: 16939243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving a narrow size distribution of Au particles at a precise depth in SiO2 by segregation of Au precipitates.
    Charnvanichborikarn S; Conway MJ; Wong-Leung J; Williams JS
    Nanotechnology; 2009 May; 20(18):185603. PubMed ID: 19420619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal control of the activity of HRP-functionalized gold nanoparticles.
    Bretschneider JC; Reismann M; von Plessen G; Simon U
    Small; 2009 Nov; 5(22):2549-53. PubMed ID: 19697304
    [No Abstract]   [Full Text] [Related]  

  • 6. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine.
    Fent GM; Casteel SW; Kim DY; Kannan R; Katti K; Chanda N; Katti K
    Nanomedicine; 2009 Jun; 5(2):128-35. PubMed ID: 19480048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au.
    Wang C; Peng S; Chan R; Sun S
    Small; 2009 Mar; 5(5):567-70. PubMed ID: 19189329
    [No Abstract]   [Full Text] [Related]  

  • 9. Colorimetric response of peptide-functionalized gold nanoparticles to metal ions.
    Slocik JM; Zabinski JS; Phillips DM; Naik RR
    Small; 2008 May; 4(5):548-51. PubMed ID: 18383577
    [No Abstract]   [Full Text] [Related]  

  • 10. The photoinduced formation of gold nanoparticles in a mesoporous titania gel monolith.
    Shen W; Liu F; Qiu J; Yao B
    Nanotechnology; 2009 Mar; 20(10):105605. PubMed ID: 19417525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in situ real-time x-ray diffraction study of phase segregation in Au-Pt nanoparticles.
    Malis O; Radu M; Mott D; Wanjala B; Luo J; Zhong CJ
    Nanotechnology; 2009 Jun; 20(24):245708. PubMed ID: 19471088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely high stability of glutathionate-protected Au25 clusters against core etching.
    Shichibu Y; Negishi Y; Tsunoyama H; Kanehara M; Teranishi T; Tsukuda T
    Small; 2007 May; 3(5):835-9. PubMed ID: 17352431
    [No Abstract]   [Full Text] [Related]  

  • 16. Electronic structure of thiolate-covered gold nanoparticles: Au102(MBA)44.
    Li Y; Galli G; Gygi F
    ACS Nano; 2008 Sep; 2(9):1896-902. PubMed ID: 19206430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles.
    Ito D; Jespersen ML; Hutchison JE
    ACS Nano; 2008 Oct; 2(10):2001-6. PubMed ID: 19206444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of metal nanoparticles into nanogaps.
    Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F
    Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold.
    Sharma J; Chhabra R; Andersen CS; Gothelf KV; Yan H; Liu Y
    J Am Chem Soc; 2008 Jun; 130(25):7820-1. PubMed ID: 18510317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring a nanotube dispersion mechanism with gold-labeled proteins via cryo-TEM imaging.
    Goldberg-Oppenheimer P; Regev O
    Small; 2007 Nov; 3(11):1894-9. PubMed ID: 17935060
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.