These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17262863)

  • 1. The in vitro characterization of the erythronolide mycarosyltransferase EryBV and its utility in macrolide diversification.
    Zhang C; Fu Q; Albermann C; Li L; Thorson JS
    Chembiochem; 2007 Mar; 8(4):385-90. PubMed ID: 17262863
    [No Abstract]   [Full Text] [Related]  

  • 2. A new insight into solid-state conformation of macrolide antibiotics.
    Miroshnyk I; Mirza S; Zorky PM; Heinämäki J; Yli-Kauhaluoma J; Yliruusi J
    Bioorg Med Chem; 2008 Jan; 16(1):232-9. PubMed ID: 17936632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Various novel erythromycin derivatives obtained by different modifications: recent advance in macrolide antibiotics.
    Ma C; Ma S
    Mini Rev Med Chem; 2010 Apr; 10(4):272-86. PubMed ID: 20470243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial biosynthesis of 5-O-desosaminyl erythronolide A as a potent precursor of ketolide antibiotics.
    Basnet DB; Park JW; Yoon YJ
    J Biotechnol; 2008 May; 135(1):92-6. PubMed ID: 18430483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensor-guided screening for macrolides.
    Möhrle V; Stadler M; Eberz G
    Anal Bioanal Chem; 2007 Jul; 388(5-6):1117-25. PubMed ID: 17497142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and antibacterial activity of 11,12-carbamate-3-O-acyl erythromycin derivatives.
    Xu P; Liu L; He W; Li Y; Liu J; Lei PS
    J Asian Nat Prod Res; 2009 Oct; 11(10):880-97. PubMed ID: 20183250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial glycosylation of macrolide antibiotics by Streptomyces hygroscopicus ATCC 31080 and distribution of a macrolide glycosyl transferase in several Streptomyces strains.
    Sasaki J; Mizoue K; Morimoto S; Omura S
    J Antibiot (Tokyo); 1996 Nov; 49(11):1110-8. PubMed ID: 8982340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents.
    Sugawara A; Sueki A; Hirose T; Nagai K; Gouda H; Hirono S; Shima H; Akagawa KS; Omura S; Sunazuka T
    Bioorg Med Chem Lett; 2011 Jun; 21(11):3373-6. PubMed ID: 21524580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei.
    Arakawa K; Kodama K; Tatsuno S; Ide S; Kinashi H
    Antimicrob Agents Chemother; 2006 Jun; 50(6):1946-52. PubMed ID: 16723550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling a macrocyclic bis[spirodiepoxide] strategy to erythronolide A.
    Ghosh P; Zhang Y; Emge TJ; Williams LJ
    Org Lett; 2009 Oct; 11(19):4402-5. PubMed ID: 19725523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective.
    Pinto A; Wang M; Horsman M; Boddy CN
    Org Lett; 2012 May; 14(9):2278-81. PubMed ID: 22519860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei.
    Arakawa K; Tsuda N; Taniguchi A; Kinashi H
    Chembiochem; 2012 Jul; 13(10):1447-57. PubMed ID: 22761035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 15-amido erythromycins: synthesis and in vitro activity of a new class of macrolide antibiotics.
    Shaw SJ; Abbanat D; Ashley GW; Bush K; Foleno B; Macielag M; Zhang D; Myles DC
    J Antibiot (Tokyo); 2005 Mar; 58(3):167-77. PubMed ID: 15895524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of erythromycin analogs having functional groups at C-15.
    Ashley GW; Burlingame M; Desai R; Fu H; Leaf T; Licari PJ; Tran C; Abbanat D; Bush K; Macielag M
    J Antibiot (Tokyo); 2006 Jul; 59(7):392-401. PubMed ID: 17025015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting glycosylation steps in lobophorin biosynthesis implies an iterative glycosyltransferase.
    Li S; Xiao J; Zhu Y; Zhang G; Yang C; Zhang H; Ma L; Zhang C
    Org Lett; 2013 Mar; 15(6):1374-7. PubMed ID: 23432710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New lactimidomycin congeners shed insight into lactimidomycin biosynthesis in Streptomyces amphibiosporus.
    Ju J; Seo JW; Her Y; Lim SK; Shen B
    Org Lett; 2007 Dec; 9(25):5183-6. PubMed ID: 17997563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the efficiency of the macrolactonization using MNBA in the synthesis of erythromycin A aglycon.
    Shiina I; Katoh T; Nagai S; Hashizume M
    Chem Rec; 2009; 9(6):305-20. PubMed ID: 20041452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total synthesis of erythronolide A by Mg(II)-mediated cycloadditions of nitrile oxides.
    Muri D; Lohse-Fraefel N; Carreira EM
    Angew Chem Int Ed Engl; 2005 Jun; 44(26):4036-8. PubMed ID: 15906401
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonpeptide luteinizing hormone-releasing hormone antagonists derived from erythromycin A: design, synthesis, and biological activity of cladinose replacement analogues.
    Randolph JT; Waid P; Nichols C; Sauer D; Haviv F; Diaz G; Bammert G; Besecke LM; Segreti JA; Mohning KM; Bush EN; Wegner CD; Greer J
    J Med Chem; 2004 Feb; 47(5):1085-97. PubMed ID: 14971889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythronolides H and I, new erythromycin congeners from a new halophilic actinomycete Actinopolyspora sp. YIM90600.
    Huang SX; Zhao LX; Tang SK; Jiang CL; Duan Y; Shen B
    Org Lett; 2009 Mar; 11(6):1353-6. PubMed ID: 19228040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.