BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17263386)

  • 1. Collective relaxation of protein protons at very low magnetic field: a new window on protein dynamics and aggregation.
    Luchinat C; Parigi G
    J Am Chem Soc; 2007 Feb; 129(5):1055-64. PubMed ID: 17263386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The magnetic field and temperature dependences of proton spin-lattice relaxation in proteins.
    Goddard Y; Korb JP; Bryant RG
    J Chem Phys; 2007 May; 126(17):175105. PubMed ID: 17492890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined molecular dynamic simulation and urea 14N NMR relaxation study of the urea-lysozyme system.
    Lindgren M; Sparrman T; Westlund PO
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):953-9. PubMed ID: 20061179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.
    Seliger J; Zagar V
    J Magn Reson; 2009 Aug; 199(2):199-207. PubMed ID: 19464934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overall and internal protein dynamics in solution studied by the nonselective proton relaxation.
    Krushelnitsky AG; Fedotov VD
    J Biomol Struct Dyn; 1993 Aug; 11(1):121-41. PubMed ID: 8216940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of the conformational mobility of globular proteins in aqueous solutions according to their proton relaxation in a rotating system of coordinates].
    Aksenov SI; Filatov AV; Gangardt MG; Revokatov OP
    Biofizika; 1978; 23(2):224-7. PubMed ID: 647031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.
    Hushcha T; Kaatze U; Peytcheva A
    Biopolymers; 2004 May-Jun 5; 74(1-2):32-6. PubMed ID: 15137089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy of proton binding in proteins.
    Poland D
    Biopolymers; 2003 May; 69(1):60-71. PubMed ID: 12717722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-relaxation bottleneck in water-lysozyme proton magnetization exchange.
    Kakule JF; Sharp AR; Schreiner LJ; Thompson RT; Kupka T; Holly R; Peemoeller H
    Biopolymers; 2006 Sep; 83(1):11-9. PubMed ID: 16615066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study.
    English NJ; Mooney DA
    J Chem Phys; 2007 Mar; 126(9):091105. PubMed ID: 17362097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance and spin relaxation in biological systems.
    Bryant RG; Korb JP
    Magn Reson Imaging; 2005 Feb; 23(2):167-73. PubMed ID: 15833608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.
    García de la Torre J; Huertas ML; Carrasco B
    J Magn Reson; 2000 Nov; 147(1):138-46. PubMed ID: 11042057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic models and computational methods for NMR relaxation.
    García de la Torre J; Bernadó P; Pons M
    Methods Enzymol; 2005; 394():419-30. PubMed ID: 15808231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A faster way to characterize by triple-quantum-filtered (17)O NMR water molecules strongly bound to macromolecules in solution.
    Lehoux A; Krzystyniak M; Baguet E
    J Magn Reson; 2001 Jan; 148(1):11-22. PubMed ID: 11133271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions.
    Yilmaz A; Budak H; Ulak FS
    Magn Reson Imaging; 2008 Feb; 26(2):254-60. PubMed ID: 17683891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear effect of GdnHCl on hydration dynamics of proteins: a 1H magnetic relaxation dispersion study.
    Rao MT; Bhuyan AK; Venu K; Sastry VS
    J Phys Chem B; 2009 May; 113(19):6994-7002. PubMed ID: 19388636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.