BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17263389)

  • 1. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.
    Huber K; Witte T; Hollmann J; Keuker-Baumann S
    J Am Chem Soc; 2007 Feb; 129(5):1089-94. PubMed ID: 17263389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.
    Liu J; Pancera S; Boyko V; Gummel J; Nayuk R; Huber K
    Langmuir; 2012 Feb; 28(7):3593-605. PubMed ID: 22256962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle x-ray scattering study.
    Goerigk G; Huber K; Schweins R
    J Chem Phys; 2007 Oct; 127(15):154908. PubMed ID: 17949215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques.
    Chen L; Zhao W; Jiao Y; He X; Wang J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):484-90. PubMed ID: 17329151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyacrylates in the presence of an extraordinary monovalent cation-Solution behavior and metal nanoparticle formation.
    Urbanski A; Hansch M; Lopez CG; Schweins R; Hertle Y; Hellweg T; Polzer F; Huber K
    J Chem Phys; 2018 Oct; 149(16):163318. PubMed ID: 30384685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-induced collapse of alkaline Earth cation-polyacrylate anion complexes.
    Lages S; Schweins R; Huber K
    J Phys Chem B; 2007 Sep; 111(35):10431-7. PubMed ID: 17696466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions.
    Mathieu Y; Lebeau B; Valtchev V
    Langmuir; 2007 Aug; 23(18):9435-42. PubMed ID: 17676774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: a combined light scattering and ASAXS study.
    Schweins R; Goerigk G; Huber K
    Eur Phys J E Soft Matter; 2006 Oct; 21(2):99-110. PubMed ID: 17149548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-scattering study of polyelectrolyte complex formation between anionic and cationic nanogels in an aqueous salt-free system.
    Miyake M; Ogawa K; Kokufuta E
    Langmuir; 2006 Aug; 22(17):7335-41. PubMed ID: 16893235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: a plasmon and cluster time-resolved spectroscopic study.
    Rodríguez-Sánchez ML; Rodríguez MJ; Blanco MC; Rivas J; López-Quintela MA
    J Phys Chem B; 2005 Jan; 109(3):1183-91. PubMed ID: 16851079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive polymer-stabilized silver nanoparticles.
    Guo L; Nie J; Du B; Peng Z; Tesche B; Kleinermanns K
    J Colloid Interface Sci; 2008 Mar; 319(1):175-81. PubMed ID: 18068715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior.
    Naoi K; Ohko Y; Tatsuma T
    J Am Chem Soc; 2004 Mar; 126(11):3664-8. PubMed ID: 15025496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution.
    Impellitteri CA; Tolaymat TM; Scheckel KG
    J Environ Qual; 2009; 38(4):1528-30. PubMed ID: 19465729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.
    Sloufová I; Sisková K; Vlcková B; Stepánek J
    Phys Chem Chem Phys; 2008 Apr; 10(16):2233-42. PubMed ID: 18404231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copolymers of maleic acid and their amphiphilic derivatives as stabilizers of silver nanoparticles.
    Samoilova N; Kurskaya E; Krayukhina M; Askadsky A; Yamskov I
    J Phys Chem B; 2009 Mar; 113(11):3395-403. PubMed ID: 19239207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ time-resolved XAFS analysis of silver particle formation by photoreduction in polymer solutions.
    Harada M; Inada Y; Nomura M
    J Colloid Interface Sci; 2009 Sep; 337(2):427-38. PubMed ID: 19539301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35.
    Gohon Y; Giusti F; Prata C; Charvolin D; Timmins P; Ebel C; Tribet C; Popot JL
    Langmuir; 2006 Jan; 22(3):1281-90. PubMed ID: 16430295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the nucleation and growth of amorphous CaCO3 by means of time-resolved static light scattering.
    Liu J; Rieger J; Huber K
    Langmuir; 2008 Aug; 24(15):8262-71. PubMed ID: 18611042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.