BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 17263405)

  • 1. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding modes of thioflavin-T to the single-layer beta-sheet of the peptide self-assembly mimics.
    Wu C; Biancalana M; Koide S; Shea JE
    J Mol Biol; 2009 Dec; 394(4):627-33. PubMed ID: 19799914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach.
    Roterman I; KrUl M; Nowak M; Konieczny L; Rybarska J; Stopa B; Piekarska B; Zemanek G
    Med Sci Monit; 2001; 7(4):771-84. PubMed ID: 11433211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics approach to the structural characterization of amyloid aggregation.
    Cecchini M; Curcio R; Pappalardo M; Melki R; Caflisch A
    J Mol Biol; 2006 Apr; 357(4):1306-21. PubMed ID: 16483608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure.
    Lei H; Wu C; Wang Z; Duan Y
    J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding of thioflavin-T to amyloid fibrils: localisation and implications.
    Krebs MR; Bromley EH; Donald AM
    J Struct Biol; 2005 Jan; 149(1):30-7. PubMed ID: 15629655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphotericin B binds to amyloid fibrils and delays their formation: a therapeutic mechanism?
    Hartsel SC; Weiland TR
    Biochemistry; 2003 May; 42(20):6228-33. PubMed ID: 12755626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3.
    Butko P; Buford JP; Goodwin JS; Stroud PA; McCormick CL; Cannon GC
    Biochem Biophys Res Commun; 2001 Jan; 280(1):212-5. PubMed ID: 11162501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling to investigate the binding of Congo red toward GNNQQNY protofibril and in silico virtual screening for the identification of new aggregation inhibitors.
    Zhao JH; Liu HL; Elumalai P; Chen WH; Men LC; Liu KT
    J Mol Model; 2013 Jan; 19(1):151-62. PubMed ID: 22836831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core.
    Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amyloid-Congo red interface at atomic resolution.
    Schütz AK; Soragni A; Hornemann S; Aguzzi A; Ernst M; Böckmann A; Meier BH
    Angew Chem Int Ed Engl; 2011 Jun; 50(26):5956-60. PubMed ID: 21591034
    [No Abstract]   [Full Text] [Related]  

  • 12. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study.
    Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A
    J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beta fibrillogenesis: kinetic parameters for fibril formation from congo red binding.
    Inouye H; Kirschner DA
    J Struct Biol; 2000 Jun; 130(2-3):123-9. PubMed ID: 10940220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Templating molecular arrays in amyloid's cross-beta grooves.
    Childers WS; Mehta AK; Lu K; Lynn DG
    J Am Chem Soc; 2009 Jul; 131(29):10165-72. PubMed ID: 19569651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay.
    Klunk WE; Jacob RF; Mason RP
    Anal Biochem; 1999 Jan; 266(1):66-76. PubMed ID: 9887214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein.
    Lin NS; Chao JC; Cheng HM; Chou FC; Chang CF; Chen YR; Chang YJ; Huang SJ; Chan JC
    Chemistry; 2010 May; 16(18):5492-9. PubMed ID: 20358555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Congo red and protein aggregation in neurodegenerative diseases.
    Frid P; Anisimov SV; Popovic N
    Brain Res Rev; 2007 Jan; 53(1):135-60. PubMed ID: 16959325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the early steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors: a numerical study.
    Chebaro Y; Derreumaux P
    Proteins; 2009 May; 75(2):442-52. PubMed ID: 18837034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2.
    Sabaté R; Lascu I; Saupe SJ
    J Struct Biol; 2008 Jun; 162(3):387-96. PubMed ID: 18406172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.