These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 17263416)
1. Residue-specific 13C' CSA tensor principal components for ubiquitin: correlation between tensor components and hydrogen bonding. Burton RA; Tjandra N J Am Chem Soc; 2007 Feb; 129(5):1321-6. PubMed ID: 17263416 [TBL] [Abstract][Full Text] [Related]
2. Determination of the residue-specific 15N CSA tensor principal components using multiple alignment media. Burton RA; Tjandra N J Biomol NMR; 2006 Aug; 35(4):249-59. PubMed ID: 16823597 [TBL] [Abstract][Full Text] [Related]
3. 2D relayed anisotropy correlation NMR: characterization of the 13C' chemical shift tensor orientation in the peptide plane of the dipeptide AibAib. Heise B; Leppert J; Wenschuh H; Ohlenschläger O; Görlach M; Ramachandran R J Biomol NMR; 2001 Feb; 19(2):167-79. PubMed ID: 11256812 [TBL] [Abstract][Full Text] [Related]
4. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory. Xu XP; Case DA Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429 [TBL] [Abstract][Full Text] [Related]
5. Characterization of 15N chemical shift tensors via 15N-13C REDOR and 1N-1H dipolar-shift CPMAS NMR spectroscopy. Heise B; Leppert J; Ramachandran R Solid State Nucl Magn Reson; 2000 Jun; 16(3):177-87. PubMed ID: 10868570 [TBL] [Abstract][Full Text] [Related]
6. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
7. Measurement of 15N chemical shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the application of magic angle sample spinning. Kurita J; Shimahara H; Utsunomiya-Tate N; Tate S J Magn Reson; 2003 Jul; 163(1):163-73. PubMed ID: 12852920 [TBL] [Abstract][Full Text] [Related]
8. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes. Tate S; Shimahara H; Utsunomiya-Tate N J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755 [TBL] [Abstract][Full Text] [Related]
9. Intraresidue 1H-15N-13C' and 1H alpha-13C alpha-13C' dipole-CSA relaxation interference as a source of constraints for structural refinement of metal-binding sites in zinc-finger proteins. Kloiber K; Schüler W; Konrat R J Biomol NMR; 2001 Apr; 19(4):347-54. PubMed ID: 11370780 [TBL] [Abstract][Full Text] [Related]
10. Measurement of cross correlation between dipolar coupling and chemical shift anisotropy in the spin relaxation of 13C, 15N-labeled proteins. Ghose R; Huang K; Prestegard JH J Magn Reson; 1998 Dec; 135(2):487-99. PubMed ID: 9878476 [TBL] [Abstract][Full Text] [Related]
11. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy. Weaver AJ; Kemple MD; Prendergast FG Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021 [TBL] [Abstract][Full Text] [Related]
12. Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. Wylie BJ; Franks WT; Graesser DT; Rienstra CM J Am Chem Soc; 2005 Aug; 127(34):11946-7. PubMed ID: 16117526 [TBL] [Abstract][Full Text] [Related]
13. Structure determination in "shiftless" solid state NMR of oriented protein samples. Yin Y; Nevzorov AA J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286 [TBL] [Abstract][Full Text] [Related]
14. Quantification of H/D isotope effects on protein hydrogen-bonds by h3JNC' and 1JNC' couplings and peptide group 15N and 13C' chemical shifts. Jaravine VA; Cordier F; Grzesiek S J Biomol NMR; 2004 Jul; 29(3):309-18. PubMed ID: 15213429 [TBL] [Abstract][Full Text] [Related]
15. Determination of calpha chemical shift tensor orientation in peptides by dipolar-modulated chemical shift recoupling NMR spectroscopy. Yao X; Hong M J Am Chem Soc; 2002 Mar; 124(11):2730-8. PubMed ID: 11890824 [TBL] [Abstract][Full Text] [Related]
16. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. Ying J; Grishaev A; Bryce DL; Bax A J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267 [TBL] [Abstract][Full Text] [Related]
17. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database. Xu XP; Case DA J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752 [TBL] [Abstract][Full Text] [Related]
18. Measurement of the protein backbone dihedral angle phi based on quantification of remote CSA/DD interference in inter-residue 13C'(i - 1)-13Calpha(i) multiple-quantum coherences. Kloiber K; Konrat R J Biomol NMR; 2000 Jul; 17(3):265-8. PubMed ID: 10959633 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity-enhanced double-TROSY experiment for simultaneous measurement of one-bond 15N-1H, 15N-13C' and two-bond 1H-13C' couplings. Hoshino M; Otting G J Magn Reson; 2004 Dec; 171(2):270-6. PubMed ID: 15546753 [TBL] [Abstract][Full Text] [Related]
20. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion. Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]