These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
648 related articles for article (PubMed ID: 17263511)
1. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511 [TBL] [Abstract][Full Text] [Related]
2. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
4. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). Wang J; Yuan J; Yang Z; Huang B; Zhou Y; Xin J; Gong Y; Yu H J Agric Food Chem; 2009 Oct; 57(19):8942-9. PubMed ID: 19739670 [TBL] [Abstract][Full Text] [Related]
5. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Yu H; Wang J; Fang W; Yuan J; Yang Z Sci Total Environ; 2006 Nov; 370(2-3):302-9. PubMed ID: 16870236 [TBL] [Abstract][Full Text] [Related]
6. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
7. Screening Capsicum chinense fruits for heavy metals bioaccumulation. Antonious GF; Snyder JC; Berke T; Jarret RL J Environ Sci Health B; 2010 Aug; 45(6):562-71. PubMed ID: 20635296 [TBL] [Abstract][Full Text] [Related]
8. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Zhuang P; McBride MB; Xia H; Li N; Li Z Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils. Hao X; Zhou D; Wang Y; Shi F; Jiang P Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793 [TBL] [Abstract][Full Text] [Related]
10. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Zeng F; Mao Y; Cheng W; Wu F; Zhang G Environ Pollut; 2008 May; 153(2):309-14. PubMed ID: 17905495 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Notten MJ; Oosthoek AJ; Rozema J; Aerts R Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
13. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
14. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824 [TBL] [Abstract][Full Text] [Related]
15. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
16. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Nabulo G; Oryem-Origa H; Diamond M Environ Res; 2006 May; 101(1):42-52. PubMed ID: 16527265 [TBL] [Abstract][Full Text] [Related]
17. Aromatic plant production on metal contaminated soils. Zheljazkov VD; Craker LE; Xing B; Nielsen NE; Wilcox A Sci Total Environ; 2008 Jun; 395(2-3):51-62. PubMed ID: 18353428 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Zhao X; Dong D; Hua X; Dong S J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903 [TBL] [Abstract][Full Text] [Related]
19. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Liu W; Zhou Q; An J; Sun Y; Liu R J Hazard Mater; 2010 Jan; 173(1-3):737-43. PubMed ID: 19775811 [TBL] [Abstract][Full Text] [Related]
20. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]