BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

799 related articles for article (PubMed ID: 17263563)

  • 1. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.
    Nath A; Atkins WM; Sligar SG
    Biochemistry; 2007 Feb; 46(8):2059-69. PubMed ID: 17263563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nanodisc: a novel tool for membrane protein studies.
    Borch J; Hamann T
    Biol Chem; 2009 Aug; 390(8):805-14. PubMed ID: 19453280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy.
    Glück JM; Wittlich M; Feuerstein S; Hoffmann S; Willbold D; Koenig BW
    J Am Chem Soc; 2009 Sep; 131(34):12060-1. PubMed ID: 19663495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
    Morgan CR; Hebling CM; Rand KD; Stafford DW; Jorgenson JW; Engen JR
    Mol Cell Proteomics; 2011 Sep; 10(9):M111.010876. PubMed ID: 21715319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs.
    Nath A; Trexler AJ; Koo P; Miranker AD; Atkins WM; Rhoades E
    Methods Enzymol; 2010; 472():89-117. PubMed ID: 20580961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and dynamic properties of phospholipid bilayer nanodiscs.
    Nakano M; Fukuda M; Kudo T; Miyazaki M; Wada Y; Matsuzaki N; Endo H; Handa T
    J Am Chem Soc; 2009 Jun; 131(23):8308-12. PubMed ID: 19456103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size.
    Denisov IG; Grinkova YV; Lazarides AA; Sligar SG
    J Am Chem Soc; 2004 Mar; 126(11):3477-87. PubMed ID: 15025475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.
    Civjan NR; Bayburt TH; Schuler MA; Sligar SG
    Biotechniques; 2003 Sep; 35(3):556-60, 562-3. PubMed ID: 14513561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static and dynamic characterization of nanodiscs with apolipoprotein A-I and its model peptide.
    Miyazaki M; Tajima Y; Handa T; Nakano M
    J Phys Chem B; 2010 Sep; 114(38):12376-82. PubMed ID: 20812712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of lipid nanodiscs.
    Pourmousa M; Pastor RW
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2094-2107. PubMed ID: 29729280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry.
    Hebling CM; Morgan CR; Stafford DW; Jorgenson JW; Rand KD; Engen JR
    Anal Chem; 2010 Jul; 82(13):5415-9. PubMed ID: 20518534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid bilayer nanodiscs: a powerful tool to study the structural organization and biochemical reactivity of proteins in membrane-like environments.
    Hernández-Rocamora VM; García-Montañés C; Rivas G
    Curr Top Med Chem; 2014; 14(23):2637-46. PubMed ID: 25515754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes.
    Nath A; Grinkova YV; Sligar SG; Atkins WM
    J Biol Chem; 2007 Sep; 282(39):28309-28320. PubMed ID: 17573349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-angle scattering from phospholipid nanodiscs: derivation and refinement of a molecular constrained analytical model form factor.
    Skar-Gislinge N; Arleth L
    Phys Chem Chem Phys; 2011 Feb; 13(8):3161-70. PubMed ID: 21152549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer.
    Knowles TJ; Finka R; Smith C; Lin YP; Dafforn T; Overduin M
    J Am Chem Soc; 2009 Jun; 131(22):7484-5. PubMed ID: 19449872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes.
    Stepien P; Polit A; Wisniewska-Becker A
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):60-6. PubMed ID: 25306967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligning nanodiscs at the air-water interface, a neutron reflectivity study.
    Wadsäter M; Simonsen JB; Lauridsen T; Tveten EG; Naur P; Bjørnholm T; Wacklin H; Mortensen K; Arleth L; Feidenhans'l R; Cárdenas M
    Langmuir; 2011 Dec; 27(24):15065-73. PubMed ID: 22047603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoinositide-incorporated lipid-protein nanodiscs: A tool for studying protein-lipid interactions.
    Kobashigawa Y; Harada K; Yoshida N; Ogura K; Inagaki F
    Anal Biochem; 2011 Mar; 410(1):77-83. PubMed ID: 21094116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks.
    Bayburt TH; Sligar SG
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6725-30. PubMed ID: 11997441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.