These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 17263774)
1. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Puig S; Andrés-Colás N; García-Molina A; Peñarrubia L Plant Cell Environ; 2007 Mar; 30(3):271-290. PubMed ID: 17263774 [TBL] [Abstract][Full Text] [Related]
2. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Wintz H; Fox T; Wu YY; Feng V; Chen W; Chang HS; Zhu T; Vulpe C J Biol Chem; 2003 Nov; 278(48):47644-53. PubMed ID: 13129917 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Bernal M; Casero D; Singh V; Wilson GT; Grande A; Yang H; Dodani SC; Pellegrini M; Huijser P; Connolly EL; Merchant SS; Krämer U Plant Cell; 2012 Feb; 24(2):738-61. PubMed ID: 22374396 [TBL] [Abstract][Full Text] [Related]
4. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Mukherjee I; Campbell NH; Ash JS; Connolly EL Planta; 2006 May; 223(6):1178-90. PubMed ID: 16362328 [TBL] [Abstract][Full Text] [Related]
5. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. Perea-García A; Puig S; Peñarrubia L J Exp Bot; 2022 Mar; 73(6):1735-1750. PubMed ID: 34849747 [TBL] [Abstract][Full Text] [Related]
6. Optimal copper supply is required for normal plant iron deficiency responses. Waters BM; Armbrust LC Plant Signal Behav; 2013; 8(12):e26611. PubMed ID: 24084753 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Garcia-Molina A; Andrés-Colás N; Perea-García A; Neumann U; Dodani SC; Huijser P; Peñarrubia L; Puig S Plant Cell Physiol; 2013 Aug; 54(8):1378-90. PubMed ID: 23766354 [TBL] [Abstract][Full Text] [Related]
8. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542 [TBL] [Abstract][Full Text] [Related]
9. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Chen YH; Wu XM; Ling HQ; Yang WC Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393 [TBL] [Abstract][Full Text] [Related]
10. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels. Lešková A; Giehl RFH; Hartmann A; Fargašová A; von Wirén N Plant Physiol; 2017 Jul; 174(3):1648-1668. PubMed ID: 28500270 [TBL] [Abstract][Full Text] [Related]
11. AtHO1 is involved in iron homeostasis in an NO-dependent manner. Li H; Song JB; Zhao WT; Yang ZM Plant Cell Physiol; 2013 Jul; 54(7):1105-17. PubMed ID: 23620481 [TBL] [Abstract][Full Text] [Related]
12. The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis. Garcia L; Mansilla N; Ocampos N; Pagani MA; Welchen E; Gonzalez DH Plant Mol Biol; 2019 Apr; 99(6):621-638. PubMed ID: 30778722 [TBL] [Abstract][Full Text] [Related]
13. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944 [TBL] [Abstract][Full Text] [Related]
14. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Curie C; Alonso JM; Le Jean M; Ecker JR; Briat JF Biochem J; 2000 May; 347 Pt 3(Pt 3):749-55. PubMed ID: 10769179 [TBL] [Abstract][Full Text] [Related]
15. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101 [TBL] [Abstract][Full Text] [Related]
16. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655 [TBL] [Abstract][Full Text] [Related]
17. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424 [TBL] [Abstract][Full Text] [Related]
18. Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Carrió-Seguí À; Romero P; Curie C; Mari S; Peñarrubia L Sci Rep; 2019 Mar; 9(1):4648. PubMed ID: 30874615 [TBL] [Abstract][Full Text] [Related]
19. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Duy D; Wanner G; Meda AR; von Wirén N; Soll J; Philippar K Plant Cell; 2007 Mar; 19(3):986-1006. PubMed ID: 17337631 [TBL] [Abstract][Full Text] [Related]
20. The zinc homeostasis network of land plants. Sinclair SA; Krämer U Biochim Biophys Acta; 2012 Sep; 1823(9):1553-67. PubMed ID: 22626733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]