BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17263794)

  • 1. Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones.
    Schmidt H; Arendt O; Brown EB; Schwaller B; Eilers J
    J Neurochem; 2007 Feb; 100(3):727-35. PubMed ID: 17263794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching.
    Schmidt H; Brown EB; Schwaller B; Eilers J
    Biophys J; 2003 Apr; 84(4):2599-608. PubMed ID: 12668468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.
    Schmidt H; Stiefel KM; Racay P; Schwaller B; Eilers J
    J Physiol; 2003 Aug; 551(Pt 1):13-32. PubMed ID: 12813159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells.
    Chen G; Racay P; Bichet S; Celio MR; Eggli P; Schwaller B
    Neuroscience; 2006 Sep; 142(1):97-105. PubMed ID: 16860487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity.
    Scotti AL; Nitsch C
    Anat Embryol (Berl); 1992; 185(2):163-7. PubMed ID: 1536448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous diffusion in Purkinje cell dendrites caused by spines.
    Santamaria F; Wils S; De Schutter E; Augustine GJ
    Neuron; 2006 Nov; 52(4):635-48. PubMed ID: 17114048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling.
    Collin T; Chat M; Lucas MG; Moreno H; Racay P; Schwaller B; Marty A; Llano I
    J Neurosci; 2005 Jan; 25(1):96-107. PubMed ID: 15634771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical localization of calbindin D28-k, parvalbumin, and calretinin in the cerebellar cortex of the circling mouse.
    Maskey D; Pradhan J; Kim HJ; Park KS; Ahn SC; Kim MJ
    Neurosci Lett; 2010 Oct; 483(2):132-6. PubMed ID: 20691752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between guinea pig and rat in the dorsal cochlear nucleus: expression of calcium-binding proteins by cartwheel and Purkinje-like cells.
    Spatz WB
    Hear Res; 1997 May; 107(1-2):136-46. PubMed ID: 9165354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca²⁺-dependent interactions via its EF-hand 5 domain.
    Arendt O; Schwaller B; Brown EB; Eilers J; Schmidt H
    J Physiol; 2013 Aug; 591(16):3887-99. PubMed ID: 23732647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons.
    Schmidt H; Schwaller B; Eilers J
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5850-5. PubMed ID: 15809430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a perisomatic innervation of parvalbumin-containing interneurons by individual pyramidal cells in the basolateral amygdala.
    McDonald AJ; Mascagni F; Mania I; Rainnie DG
    Brain Res; 2005 Feb; 1035(1):32-40. PubMed ID: 15713274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex.
    Hawkes R; Leclerc N
    Brain Res; 1989 Jan; 476(2):279-90. PubMed ID: 2702469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in Ca2+-regulated functions of early postnatal Purkinje neurons.
    Gruol DL; Quina LA; Netzeband JG; Nguyen D; Gullette CE
    J Neurosci Res; 2006 Jun; 83(8):1381-92. PubMed ID: 16555300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study.
    Antal M; Freund TF; Polgár E
    J Comp Neurol; 1990 May; 295(3):467-84. PubMed ID: 2351764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-binding proteins in the cerebellar cortex of the bottlenose dolphin and harbour porpoise.
    Kalinichenko SG; Pushchin II
    J Chem Neuroanat; 2008 Jul; 35(4):364-70. PubMed ID: 18455363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin II.
    Wylie DR; Gutierrez-Ibanez C; Graham DJ; Kreuzer MB; Pakan JM; Iwaniuk AN
    Neuroscience; 2011 Jun; 185():73-84. PubMed ID: 21501663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary distributions of calbindin, parvalbumin and calretinin in the cerebellar vermis of the adult cat.
    Yan XX; Garey LJ
    J Hirnforsch; 1998; 39(1):9-14. PubMed ID: 9672106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of granule cell axons and climbing fiber afferents in the turtle cerebellar cortex.
    Tolbert DL; Conoyer B; Ariel M
    Anat Embryol (Berl); 2004 Nov; 209(1):49-58. PubMed ID: 15503131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.