These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17263842)

  • 1. Susceptibility of compound 48/80-sensitized Pseudomonas aeruginosa to the hydrophobic biocide triclosan.
    Ellison ML; Roberts AL; Champlin FR
    FEMS Microbiol Lett; 2007 Apr; 269(2):295-300. PubMed ID: 17263842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan.
    Ellison ML; Champlin FR
    Vet Microbiol; 2007 Oct; 124(3-4):310-8. PubMed ID: 17560745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa.
    Champlin FR; Ellison ML; Bullard JW; Conrad RS
    Int J Antimicrob Agents; 2005 Aug; 26(2):159-164. PubMed ID: 16040235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of methylation on the antibacterial properties of triclosan in Pasteurella multocida and Pseudomonas aeruginosa variant strains.
    Clayborn AB; Toofan SN; Champlin FR
    J Hosp Infect; 2011 Feb; 77(2):129-33. PubMed ID: 21194793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan.
    Braoudaki M; Hilton AC
    Int J Antimicrob Agents; 2005 Jan; 25(1):31-7. PubMed ID: 15620823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of the combination triclosan with 2-phenylphenol against Pseudomonas aeruginosa and fungi.
    Tumah HN
    Saudi Med J; 2005 May; 26(5):723-7. PubMed ID: 15951857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triclosan-tolerant bacteria: changes in susceptibility to antibiotics.
    Cottell A; Denyer SP; Hanlon GW; Ochs D; Maillard JY
    J Hosp Infect; 2009 May; 72(1):71-6. PubMed ID: 19246121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparate outer membrane exclusionary properties underlie intrinsic resistance to hydrophobic substances in
    Chambers LE; Chang M; Boyina K; Williams A; Dye R; Miller RV; DeGear MA; Assefa S; Köhler GA; Champlin FR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(3):257-268. PubMed ID: 33411598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whither triclosan?
    Russell AD
    J Antimicrob Chemother; 2004 May; 53(5):693-5. PubMed ID: 15073159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa.
    Hirakata Y; Kondo A; Hoshino K; Yano H; Arai K; Hirotani A; Kunishima H; Yamamoto N; Hatta M; Kitagawa M; Kohno S; Kaku M
    Int J Antimicrob Agents; 2009 Oct; 34(4):343-6. PubMed ID: 19615866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux.
    Chuanchuen R; Karkhoff-Schweizer RR; Schweizer HP
    Am J Infect Control; 2003 Apr; 31(2):124-7. PubMed ID: 12665747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ.
    Chuanchuen R; Beinlich K; Hoang TT; Becher A; Karkhoff-Schweizer RR; Schweizer HP
    Antimicrob Agents Chemother; 2001 Feb; 45(2):428-32. PubMed ID: 11158736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa.
    Escalada MG; Harwood JL; Maillard JY; Ochs D
    J Antimicrob Chemother; 2005 Jun; 55(6):879-82. PubMed ID: 15860550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of bacterial biocide and antibiotic resistance.
    Poole K
    J Appl Microbiol; 2002; 92 Suppl():55S-64S. PubMed ID: 12000613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disparate properties of Burkholderia multivorans and Pseudomonas aeruginosa regarding outer membrane chemical permeabilization to the hydrophobic substances novobiocin and triclosan.
    Ruskoski SA; McDonald AA; Bleichner JJ; Aga SS; Boyina K; Champlin FR
    PLoS One; 2023; 18(4):e0284855. PubMed ID: 37098094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility.
    Tattawasart U; Maillard JY; Furr JR; Russell AD
    J Hosp Infect; 1999 Jul; 42(3):219-29. PubMed ID: 10439995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides.
    Jones MV; Herd TM; Christie HJ
    Microbios; 1989; 58(234):49-61. PubMed ID: 2500580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane.
    Imamura Y; Higashiyama Y; Tomono K; Izumikawa K; Yanagihara K; Ohno H; Miyazaki Y; Hirakata Y; Mizuta Y; Kadota J; Iglewski BH; Kohno S
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1377-80. PubMed ID: 15793115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa.
    Yamada S; Hyo Y; Ohmori S; Ohuchi M
    Chemotherapy; 2007; 53(3):202-9. PubMed ID: 17356268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds.
    Cox SD; Markham JL
    J Appl Microbiol; 2007 Oct; 103(4):930-6. PubMed ID: 17897196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.