These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17264128)

  • 21. Balance between asymmetry and abundance in multi-domain DNA-binding proteins may regulate the kinetics of their binding to DNA.
    Pal A; Levy Y
    PLoS Comput Biol; 2020 May; 16(5):e1007867. PubMed ID: 32453726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool.
    Sander JD; Zaback P; Joung JK; Voytas DF; Dobbs D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W599-605. PubMed ID: 17526515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites.
    Gershenzon NI; Stormo GD; Ioshikhes IP
    Nucleic Acids Res; 2005; 33(7):2290-301. PubMed ID: 15849315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.
    Schmiedeskamp M; Rajagopal P; Klevit RE
    Protein Sci; 1997 Sep; 6(9):1835-48. PubMed ID: 9300483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking.
    Chou CC; Rajasekaran M; Chen C
    BMC Bioinformatics; 2010 Jun; 11():334. PubMed ID: 20565873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.
    Brayer KJ; Segal DJ
    Cell Biochem Biophys; 2008; 50(3):111-31. PubMed ID: 18253864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting DNA recognition by Cys2His2 zinc finger proteins.
    Persikov AV; Osada R; Singh M
    Bioinformatics; 2009 Jan; 25(1):22-9. PubMed ID: 19008249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA.
    Neely LS; Lee BM; Xu J; Wright PE; Gottesfeld JM
    J Mol Biol; 1999 Aug; 291(3):549-60. PubMed ID: 10448036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains.
    Hansen PK; Christensen JH; Nyborg J; Lillelund O; Thøgersen HC
    J Mol Biol; 1993 Sep; 233(2):191-202. PubMed ID: 8377197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation.
    Lee SJ; Michel SL
    Acc Chem Res; 2014 Aug; 47(8):2643-50. PubMed ID: 25098749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the zing finger protein SmZF1 from Schistosoma mansoni: Insights into DNA binding and gene regulation.
    Bitar M; Drummond MG; Costa MG; Lobo FP; Calzavara-Silva CE; Bisch PM; Machado CR; Macedo AM; Pierce RJ; Franco GR
    J Mol Graph Model; 2013 Feb; 39():29-38. PubMed ID: 23220279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain.
    Russo L; Palmieri M; Caso JV; D'Abrosca G; Diana D; Malgieri G; Baglivo I; Isernia C; Pedone PV; Fattorusso R
    Eur J Med Chem; 2015 Feb; 91():100-8. PubMed ID: 25240418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The tandem zinc-finger region of human ZHX adopts a novel C2H2 zinc finger structure with a C-terminal extension.
    Wienk H; Lammers I; Hotze A; Wu J; Wechselberger RW; Owens R; Stammers DK; Stuart D; Kaptein R; Folkers GE
    Biochemistry; 2009 Jun; 48(21):4431-9. PubMed ID: 19348505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single amino acid substitution in zinc finger 2 of Adr1p changes its binding specificity at two positions in UAS1.
    Cheng C; Young ET
    J Mol Biol; 1995 Aug; 251(1):1-8. PubMed ID: 7643379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based prediction of transcription factor binding sites using a protein-DNA docking approach.
    Liu Z; Guo JT; Li T; Xu Y
    Proteins; 2008 Sep; 72(4):1114-24. PubMed ID: 18320590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies.
    Alamanova D; Stegmaier P; Kel A
    BMC Bioinformatics; 2010 May; 11():225. PubMed ID: 20438625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties.
    Kozaki A; Hake S; Colasanti J
    Nucleic Acids Res; 2004; 32(5):1710-20. PubMed ID: 15020707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probabilistic code for DNA recognition by proteins of the EGR family.
    Benos PV; Lapedes AS; Stormo GD
    J Mol Biol; 2002 Nov; 323(4):701-27. PubMed ID: 12419259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting target DNA sequences of DNA-binding proteins based on unbound structures.
    Chen CY; Chien TY; Lin CK; Lin CW; Weng YZ; Chang DT
    PLoS One; 2012; 7(2):e30446. PubMed ID: 22312425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.