BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17265885)

  • 21. Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure.
    Sabah JR; Thippareddi H; Marsden JL; Fung DY
    J Food Prot; 2003 Aug; 66(8):1408-12. PubMed ID: 12929827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survival and germination of Clostridium perfringens spores during heating and cooling of ground pork.
    Márquez-González M; Cabrera-Díaz E; Hardin MD; Harris KB; Lucia LM; Castillo A
    J Food Prot; 2012 Apr; 75(4):682-9. PubMed ID: 22488055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of chilling rate on outgrowth of Clostridium perfringens spores in vacuum-packaged cooked beef and pork.
    Danler RJ; Boyle EA; Kastner CL; Thippareddi H; Fung DY; Phebus RK
    J Food Prot; 2003 Mar; 66(3):501-3. PubMed ID: 12636309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the Effect of Curing Ingredients Derived from Purified and Natural Sources on Inhibition of Clostridium perfringens Outgrowth during Cooling of Deli-Style Turkey Breast.
    King AM; Glass KA; Milkowski AL; Sindelar JJ
    J Food Prot; 2015 Aug; 78(8):1527-35. PubMed ID: 26219366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential for growth of Clostridium perfringens from spores in pork scrapple during cooling.
    Juneja VK; Porto-Fett AC; Gartner K; Tufft L; Luchansky JB
    Foodborne Pathog Dis; 2010 Feb; 7(2):153-7. PubMed ID: 19785539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection and application of natural antimicrobials to control Clostridium perfringens in sous-vide chicken breasts inhibition of C. perfringens in sous-vide chicken.
    Smith CJ; Olszewska MA; Diez-Gonzalez F
    Int J Food Microbiol; 2021 Jun; 347():109193. PubMed ID: 33836443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured meat and poultry.
    Juneja VK; Marks H; Huang L; Thippareddi H
    Food Microbiol; 2011 Jun; 28(4):791-5. PubMed ID: 21511140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of several methodological factors on the growth of Clostridium perfringens in cooling rate challenge studies.
    Smith S; Juneja V; Schaffner DW
    J Food Prot; 2004 Jun; 67(6):1128-32. PubMed ID: 15222538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooling rate effect on outgrowth of Clostridium perfringens in cooked, ready-to-eat turkey breast roasts.
    Steele FM; Wright KH
    Poult Sci; 2001 Jun; 80(6):813-6. PubMed ID: 11441851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde.
    Ravishankar S; Jaroni D; Zhu L; Olsen C; McHugh T; Friedman M
    J Food Sci; 2012 Jul; 77(7):M377-82. PubMed ID: 22671718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores of Clostridium perfringens type A in laboratory medium and chicken meat.
    Alanazi S; Alnoman M; Banawas S; Saito R; Sarker MR
    Food Microbiol; 2018 Aug; 73():311-318. PubMed ID: 29526218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of four retail food service cooling methods on the behavior of Clostridium perfringens ATCC 10388 in turkey roasts following heating to an internal temperature of 74 degrees C.
    Olds DA; Mendonca AF; Sneed J; Bisha B
    J Food Prot; 2006 Jan; 69(1):112-7. PubMed ID: 16416908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth.
    Valero M; Francés E
    Food Microbiol; 2006 Feb; 23(1):68-73. PubMed ID: 16942988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.
    Duan Z; Hansen TH; Hansen TB; Dalgaard P; Knøchel S
    Int J Food Microbiol; 2016 Aug; 230():45-57. PubMed ID: 27127839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of heat-treated enterotoxin-positive Clostridium perfringens and the implications for safe cooling rates.
    Andersen KG; Hansen TB; Knøchel S
    J Food Prot; 2004 Jan; 67(1):83-9. PubMed ID: 14717356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a Clostridium perfringens predictive model, developed under isothermal conditions in broth, to predict growth in ground beef during cooling.
    Smith S; Schaffner DW
    Appl Environ Microbiol; 2004 May; 70(5):2728-33. PubMed ID: 15128525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef.
    Huang L
    Int J Food Microbiol; 2003 Nov; 87(3):217-27. PubMed ID: 14527794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.