These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17265932)

  • 1. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.
    Lawrence GB; Sutherland JW; Boylen CW; Nierzwicki-Bauer SW; Momen B; Baldigo BP; Simonin HA
    Environ Sci Technol; 2007 Jan; 41(1):93-8. PubMed ID: 17265932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting acid neutralizing capacity in the Adirondack region of New York: a solute mass balance approach.
    Ito M; Mitchell MJ; Driscoll CT; Roy KM
    Environ Sci Technol; 2005 Jun; 39(11):4076-81. PubMed ID: 15984785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification.
    Lawrence GB; Dukett JE; Houck N; Snyder P; Capone S
    Environ Sci Technol; 2013 Jul; 47(13):7095-100. PubMed ID: 23751119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005.
    Lawrence GB; Roy KM; Baldigo BP; Simonin HA; Capone SB; Sutherland JW; Nierzwicki-Bauer SA; Boylen CW
    J Environ Qual; 2008; 37(6):2264-74. PubMed ID: 18948480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.
    McHale MR; Burns DA; Siemion J; Antidormi MR
    Environ Pollut; 2017 Oct; 229():607-620. PubMed ID: 28689149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acidic deposition on forest and aquatic ecosystems in New York State.
    Driscoll CT; Driscoll KM; Mitchell MJ; Raynal DJ
    Environ Pollut; 2003; 123(3):327-36. PubMed ID: 12667760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes.
    Lydersen E; Larssen T; Fjeld E
    Sci Total Environ; 2004 Jun; 326(1-3):63-9. PubMed ID: 15142766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winter-time climatic control on dissolved organic carbon export and surface water chemistry in an Adirondack forested watershed.
    Park IH; Mitchell MJ; Driscoll CT
    Environ Sci Technol; 2005 Sep; 39(18):6993-8. PubMed ID: 16201621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008.
    Lawrence GB; Simonin HA; Baldigo BP; Roy KM; Capone SB
    Environ Pollut; 2011 Oct; 159(10):2750-8. PubMed ID: 21741140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.
    Chapman PJ; Clark JM; Reynolds B; Adamson JK
    Environ Pollut; 2008 Jan; 151(1):110-20. PubMed ID: 17478019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of stream chemistry for monitoring acidic deposition effects in the Adirondack region of New York.
    Lawrence GB; Momen B; Roy KM
    J Environ Qual; 2004; 33(3):1002-9. PubMed ID: 15224937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional target loads of atmospheric nitrogen and sulfur deposition for the protection of stream and watershed soil resources of the Adirondack Mountains, USA.
    McDonnell TC; Driscoll CT; Sullivan TJ; Burns DA; Baldigo BP; Shao S; Lawrence GB
    Environ Pollut; 2021 Jul; 281():117110. PubMed ID: 33872891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape control of stream water aluminum in a boreal catchment during spring flood.
    Cory N; Buffam I; Laudon H; Köhler S; Bishop K
    Environ Sci Technol; 2006 Jun; 40(11):3494-500. PubMed ID: 16786685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK.
    Ryan JL; Lynam P; Heal KV; Palmer SM
    Sci Total Environ; 2012 Nov; 439():321-31. PubMed ID: 23085669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum toxicity risk reduction as a result of reduced acid deposition in Adirondack lakes and ponds.
    Michelena TM; Farrell JL; Winkler DA; Goodrich CA; Boylen CW; Sutherland JW; Nierzwicki-Bauer SA
    Environ Monit Assess; 2016 Nov; 188(11):636. PubMed ID: 27783344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition.
    Driscoll CT; Driscoll KM; Roy KM; Mitchell MJ
    Environ Sci Technol; 2003 May; 37(10):2036-42. PubMed ID: 12785505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminium in UK rivers: a need for integrated research related to kinetic factors, colloidal transport, carbon and habitat.
    Neal C; Rowland P; Neal M; Jarvie HP; Lawlor A; Sleep D; Scholefield P
    J Environ Monit; 2011 Aug; 13(8):2153-64. PubMed ID: 21701704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum in acidic surface waters: chemistry, transport, and effects.
    Driscoll CT
    Environ Health Perspect; 1985 Nov; 63():93-104. PubMed ID: 3935428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data.
    Larssen T
    Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum output fluxes from forest ecosystems in Europe: a regional assessment.
    Dise NB; Matzner E; Armbruster M; MacDonald J
    J Environ Qual; 2001; 30(5):1747-56. PubMed ID: 11577884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.