These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17265934)

  • 1. A mechanistic study of methyl parathion hydrolysis by a bifunctional organoclay.
    Rav-Acha C; Groisman L; Mingelgrin U; Kirson Z; Sasson Y; Gerstl Z
    Environ Sci Technol; 2007 Jan; 41(1):106-11. PubMed ID: 17265934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption and detoxification of toxic compounds by a bifunctional organoclay.
    Groisman L; Rav-Acha C; Gerstl Z; Mingelgrin U
    J Environ Qual; 2004; 33(5):1930-6. PubMed ID: 15356256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR investigation of the behavior of an organothiophosphate pesticide, methyl parathion, sorbed on clays.
    Seger MR; Maciel GE
    Environ Sci Technol; 2006 Jan; 40(2):552-8. PubMed ID: 16468402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.
    Liao X; Zhang C; Liu Y; Luo Y; Wu S; Yuan S; Zhu Z
    Chemosphere; 2016 May; 150():90-96. PubMed ID: 26891361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis mechanism of methyl parathion evidenced by Q-Exactive mass spectrometry.
    Liu Y; Zhang C; Liao X; Luo Y; Wu S; Wang J
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19747-55. PubMed ID: 26278904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode.
    Tcheumi HL; Tonle IK; Ngameni E; Walcarius A
    Talanta; 2010 May; 81(3):972-9. PubMed ID: 20298881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.
    Cai P; He X; Xue A; Chen H; Huang Q; Yu J; Rong X; Liang W
    J Hazard Mater; 2011 Jan; 185(2-3):1032-6. PubMed ID: 21035256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10 nm gold nanoparticles.
    Nita R; Trammell SA; Ellis GA; Moore MH; Soto CM; Leary DH; Fontana J; Talebzadeh SF; Knight DA
    Chemosphere; 2016 Feb; 144():1916-9. PubMed ID: 26547026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanism of hydrolysis of labile quaternary ammonium derivatives of tertiary amines.
    Bogardus JB; Higuchi T
    J Pharm Sci; 1982 Jul; 71(7):729-35. PubMed ID: 7120052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of swelling and interlayer structure for organoclay in supercritical CO(2).
    Yu Y; Yang X
    Phys Chem Chem Phys; 2011 Jan; 13(1):282-90. PubMed ID: 20978663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: investigation of natural organic matter effects.
    Guo X; Jans U
    Environ Sci Technol; 2006 Feb; 40(3):900-6. PubMed ID: 16509335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense.
    Alvarenga N; Birolli WG; Seleghim MH; Porto AL
    Chemosphere; 2014 Dec; 117():47-52. PubMed ID: 24955826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of methylparathion in soils.
    Kishk FM; El-Essawi T; Abdel-Ghafar S; Abou-Donia MB
    J Agric Food Chem; 1976; 24(2):305-7. PubMed ID: 3526
    [No Abstract]   [Full Text] [Related]  

  • 14. Hydrolytic decontamination of methyl parathion in the presence of 2-aminoethanol: Kinetics study.
    Doumandji L; Moussiden A; Ihdene Z; Hamada B
    J Pestic Sci; 2018 Feb; 43(1):41-46. PubMed ID: 30363116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon.
    Jiang J; Zhang R; Li R; Gu JD; Li S
    Biodegradation; 2007 Aug; 18(4):403-12. PubMed ID: 17091349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities.
    Wang J; Pan Z; Zhang Z; Zhang X; Wen F; Ma T; Jiang Y; Wang L; Xu L; Kang P
    Ultrason Sonochem; 2006 Sep; 13(6):493-500. PubMed ID: 16413995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fe (III) on acid degradation of methylparathion.
    Manzanilla-Cano JA; Barceló-Quintal MH; Rendón-Osorio RB; Flores-Rodríguez J
    J Environ Sci Health B; 2007; 42(5):515-22. PubMed ID: 17562459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of methyl parathion from water by electrochemically generated Fenton's reagent.
    Diagne M; Oturan N; Oturan MA
    Chemosphere; 2007 Jan; 66(5):841-8. PubMed ID: 16870230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical monitoring of methylparathion degradation in an acid aqueous medium in presence of Cu(II).
    Manzanilla-Cano JA; Barceló-Quintal MH; Reyes-Salas EO
    J Environ Sci Health B; 2004 May; 39(4):577-88. PubMed ID: 15473638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter.
    Liao X; Zhang C; Wang Y; Tang M
    Chemosphere; 2017 Jun; 176():288-295. PubMed ID: 28273536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.