BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 17266040)

  • 21. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy.
    Heintzelman DL; Utzinger U; Fuchs H; Zuluaga A; Gossage K; Gillenwater AM; Jacob R; Kemp B; Richards-Kortum RR
    Photochem Photobiol; 2000 Jul; 72(1):103-13. PubMed ID: 10911734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes.
    Georgakoudi I; Jacobson BC; Müller MG; Sheets EE; Badizadegan K; Carr-Locke DL; Crum CP; Boone CW; Dasari RR; Van Dam J; Feld MS
    Cancer Res; 2002 Feb; 62(3):682-7. PubMed ID: 11830520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    Anal Chem; 2012 Jul; 84(14):5913-9. PubMed ID: 22724621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applicability of optical reflectance spectroscopy for detection of precancerous lesions in uterine cervix in vivo.
    Hariri Tabrizi S; Farzaneh F; Aghamiri SM
    Arch Iran Med; 2014 Sep; 17(9):602-7. PubMed ID: 25204475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence spectroscopy as a diagnostic tool for detecting cervical pre-cancer.
    Chang SK; Pavlova I; Marín NM; Follen M; Richards-Kortum R
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S61-3. PubMed ID: 16419187
    [No Abstract]   [Full Text] [Related]  

  • 26. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.
    Parekh DJ; Lin WC; Herrell SD
    J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of LMX-1A as a metastasis suppressor in cervical cancer.
    Liu CY; Chao TK; Su PH; Lee HY; Shih YL; Su HY; Chu TY; Yu MH; Lin YW; Lai HC
    J Pathol; 2009 Oct; 219(2):222-31. PubMed ID: 19644956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro differentiation of epithelial cells from cervical neoplasias resembles in vivo lesions.
    Rader JS; Golub TR; Hudson JB; Patel D; Bedell MA; Laimins LA
    Oncogene; 1990 Apr; 5(4):571-6. PubMed ID: 1691480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency and diagnostic reliability of subvisual morphologic markers for malignancy in the cervical epithelium.
    Haroske G; Bergander S; König R
    Arch Geschwulstforsch; 1988; 58(3):159-68. PubMed ID: 3415434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo.
    Mahadevan-Jansen A; Mitchell MF; Ramanujam N; Utzinger U; Richards-Kortum R
    Photochem Photobiol; 1998 Sep; 68(3):427-31. PubMed ID: 9747597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo and in vitro "markers" of human cervical intraepithelial neoplasia.
    Wilbanks GD
    Cancer Res; 1976 Jul; 36(7 PT 2):2485-94. PubMed ID: 58720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [On the detection of precancer and cancer of the uterine cervix].
    Gitman GI
    Vopr Onkol; 1969; 15(1):83-4. PubMed ID: 5784524
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of probe pressure on cervical fluorescence spectroscopy measurements.
    Nath A; Rivoire K; Chang S; Cox D; Atkinson EN; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):523-33. PubMed ID: 15189090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic diagnosis and imaging of invisible pre-cancer.
    Badizadegan K; Backman V; Boone CW; Crum CP; Dasari RR; Georgakoudi I; Keefe K; Munger K; Shapshay SM; Sheetse EE; Feld MS
    Faraday Discuss; 2004; 126():265-79; discussion 303-11. PubMed ID: 14992412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A smartphone-based standalone fluorescence spectroscopy tool for cervical precancer diagnosis in clinical conditions.
    Shukla S; Deo BS; Vishwakarma C; Mishra S; Ahirwar S; Sah AN; Pandey K; Singh S; Prasad SN; Padhi AK; Pal M; Panigrahi PK; Pradhan A
    J Biophotonics; 2024 Jun; 17(6):e202300468. PubMed ID: 38494870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smartphone-based fluorescence spectroscopic device for cervical precancer diagnosis: a random forest classification of in vitro data.
    Shukla S; Vishwakarma C; Sah AN; Ahirwar S; Pandey K; Pradhan A
    Appl Opt; 2023 Sep; 62(25):6826-6834. PubMed ID: 37706817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence spectra of blood and urine for cervical cancer detection.
    Masilamani V; Alsalhi MS; Vijmasi T; Govindarajan K; Rathan Rai R; Atif M; Prasad S; Aldwayyan AS
    J Biomed Opt; 2012 Sep; 17(9):98001-1. PubMed ID: 23085927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A statistical model for removing inter-device differences in spectroscopy.
    Wang L; Lee JS; Lane P; Atkinson EN; Zuluaga A; Follen M; MacAulay C; Cox DD
    Opt Express; 2014 Apr; 22(7):7617-24. PubMed ID: 24718136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix.
    Shukla S; Sah AN; Hatiboruah D; Ahirwar S; Nath P; Pradhan A
    Sci Rep; 2022 Jul; 12(1):11192. PubMed ID: 35778460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.