These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17266098)

  • 1. Macrophage depletion alters the blood-nerve barrier without affecting Schwann cell function after neural injury.
    Gray M; Palispis W; Popovich PG; van Rooijen N; Gupta R
    J Neurosci Res; 2007 Mar; 85(4):766-77. PubMed ID: 17266098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells.
    Gupta R; Steward O
    J Comp Neurol; 2003 Jun; 461(2):174-86. PubMed ID: 12724836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury.
    Campana WM; Li X; Shubayev VI; Angert M; Cai K; Myers RR
    Eur J Neurosci; 2006 Feb; 23(3):617-26. PubMed ID: 16487143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model.
    Morisaki S; Nishi M; Fujiwara H; Oda R; Kawata M; Kubo T
    Glia; 2010 Jun; 58(8):954-63. PubMed ID: 20169622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia.
    Chao T; Pham K; Steward O; Gupta R
    J Comp Neurol; 2008 Jan; 506(2):180-93. PubMed ID: 18022951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local down-regulation of myelin-associated glycoprotein permits axonal sprouting with chronic nerve compression injury.
    Gupta R; Rummler LS; Palispis W; Truong L; Chao T; Rowshan K; Mozaffar T; Steward O
    Exp Neurol; 2006 Aug; 200(2):418-29. PubMed ID: 16764860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclooxygenase-2 expression in Schwann cells and macrophages in the sciatic nerve after single spinal nerve injury in rats.
    Takahashi M; Kawaguchi M; Shimada K; Konishi N; Furuya H; Nakashima T
    Neurosci Lett; 2004 Jun; 363(3):203-6. PubMed ID: 15182944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sciatic nerve regeneration is accelerated in galectin-3 knockout mice.
    Narciso MS; Mietto Bde S; Marques SA; Soares CP; Mermelstein Cdos S; El-Cheikh MC; Martinez AM
    Exp Neurol; 2009 May; 217(1):7-15. PubMed ID: 19416680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal pattern of macrophage recruitment after chronic nerve compression injury.
    Gupta R; Channual JC
    J Neurotrauma; 2006 Feb; 23(2):216-26. PubMed ID: 16503805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal quantification of recruit and resident macrophages after crush nerve injury utilizing immunohistochemistry.
    Omura T; Omura K; Sano M; Sawada T; Hasegawa T; Nagano A
    Brain Res; 2005 Sep; 1057(1-2):29-36. PubMed ID: 16112089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of retinoic acid receptors alpha, beta and retinoid X receptor alpha after sciatic nerve injury.
    Zhelyaznik N; Mey J
    Neuroscience; 2006 Sep; 141(4):1761-74. PubMed ID: 16782282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of liposome-mediated macrophage depletion on Schwann cell proliferation during Wallerian degeneration.
    Kubota A; Suzuki K
    J Neurotrauma; 2000 Sep; 17(9):789-98. PubMed ID: 11011819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recovery of blood-nerve barrier in crush nerve injury--a quantitative analysis utilizing immunohistochemistry.
    Omura K; Ohbayashi M; Sano M; Omura T; Hasegawa T; Nagano A
    Brain Res; 2004 Mar; 1001(1-2):13-21. PubMed ID: 14972650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of extracellular-signal-regulated kinase-1/2 precedes and is required for injury-induced Schwann cell proliferation.
    MÃ¥rtensson L; Gustavsson P; Dahlin LB; Kanje M
    Neuroreport; 2007 Jul; 18(10):957-61. PubMed ID: 17558277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the in vivo predegenerated nerve graft on early Schwann cell migration: quantitative analysis using S100-GFP mice.
    Tomita K; Hata Y; Kubo T; Fujiwara T; Yano K; Hosokawa K
    Neurosci Lett; 2009 Sep; 461(1):36-40. PubMed ID: 19500656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Schwann cell transplants in an experimental nerve amputee model.
    Lago N; Casas C; Muir EM; Rogers J; Navarro X
    Restor Neurol Neurosci; 2009; 27(1):67-78. PubMed ID: 19164854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome.
    Gupta R; Rowshan K; Chao T; Mozaffar T; Steward O
    Exp Neurol; 2004 Jun; 187(2):500-8. PubMed ID: 15144876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury.
    Gupta R; Gray M; Chao T; Bear D; Modafferi E; Mozaffar T
    Muscle Nerve; 2005 Apr; 31(4):452-60. PubMed ID: 15685607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nerve compression activates selective nociceptive pathways and upregulates peripheral sodium channel expression in Schwann cells.
    Frieboes LR; Palispis WA; Gupta R
    J Orthop Res; 2010 Jun; 28(6):753-61. PubMed ID: 20014316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localisation and modulation of prostanoid receptors EP1 and EP4 in the rat chronic constriction injury model of neuropathic pain.
    Woodhams PL; MacDonald RE; Collins SD; Chessell IP; Day NC
    Eur J Pain; 2007 Aug; 11(6):605-13. PubMed ID: 17110143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.