These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
612 related articles for article (PubMed ID: 17266259)
1. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution. Stephenson BC; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259 [TBL] [Abstract][Full Text] [Related]
2. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257 [TBL] [Abstract][Full Text] [Related]
4. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation. Stephenson BC; Stafford KA; Beers KJ; Blankschtein D J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857 [TBL] [Abstract][Full Text] [Related]
5. Complementary use of simulations and molecular-thermodynamic theory to model micellization. Stephenson BC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution. Stephenson BC; Goldsipe A; Blankschtein D J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591 [TBL] [Abstract][Full Text] [Related]
7. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory. Stephenson BC; Stafford KA; Beers KJ; Blankschtein D J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856 [TBL] [Abstract][Full Text] [Related]
8. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants. Goldsipe A; Blankschtein D Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663 [TBL] [Abstract][Full Text] [Related]
9. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures. Goldsipe A; Blankschtein D Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic properties of micellization of Sulfobetaine-type Zwitterionic Gemini Surfactants in aqueous solutions--a free energy perturbation study. Liu G; Gu D; Liu H; Ding W; Luan H; Lou Y J Colloid Interface Sci; 2012 Jun; 375(1):148-53. PubMed ID: 22424764 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Stephenson BC; Rangel-Yagui CO; Pessoa Junior A; Tavares LC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1514-25. PubMed ID: 16460069 [TBL] [Abstract][Full Text] [Related]
12. Organization of amphiphiles: XII. Evidence in favor of formation of hydrophobic complexes in aqueous solution. Dash U; Misra PK J Colloid Interface Sci; 2011 May; 357(2):407-18. PubMed ID: 21396651 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. El Seoud OA; Pires PA; Abdel-Moghny T; Bastos EL J Colloid Interface Sci; 2007 Sep; 313(1):296-304. PubMed ID: 17509607 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies. Fisicaro E; Compari C; Duce E; Biemmi M; Peroni M; Braibanti A Phys Chem Chem Phys; 2008 Jul; 10(26):3903-14. PubMed ID: 18688390 [TBL] [Abstract][Full Text] [Related]
15. Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. Zana R J Colloid Interface Sci; 2002 Apr; 248(2):203-20. PubMed ID: 16290524 [TBL] [Abstract][Full Text] [Related]
16. Mixtures of hydrogenated and fluorinated lactobionamide surfactants with cationic surfactants: study of hydrogenated and fluorinated chains miscibility through potentiometric techniques. Peyre V; Patil S; Durand G; Pucci B Langmuir; 2007 Nov; 23(23):11465-74. PubMed ID: 17935362 [TBL] [Abstract][Full Text] [Related]
17. Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Moreira L; Firoozabadi A Langmuir; 2010 Oct; 26(19):15177-91. PubMed ID: 20809602 [TBL] [Abstract][Full Text] [Related]
18. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants. Srinivasan V; Blankschtein D Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320 [TBL] [Abstract][Full Text] [Related]
19. Effect of stiffness on the micellization behavior of model H4T4 surfactant chains. Firetto V; Floriano MA; Panagiotopoulos AZ Langmuir; 2006 Jul; 22(15):6514-22. PubMed ID: 16830992 [TBL] [Abstract][Full Text] [Related]
20. Interplay of electrostatic and hydrophobic effects with binding of cationic gemini surfactants and a conjugated polyanion: experimental and molecular modeling studies. Burrows HD; Tapia MJ; Silva CL; Pais AA; Fonseca SM; Pina J; de Melo JS; Wang Y; Marques EF; Knaapila M; Monkman AP; Garamus VM; Pradhan S; Scherf U J Phys Chem B; 2007 May; 111(17):4401-10. PubMed ID: 17425360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]