These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17266270)

  • 1. Ab initio molecular dynamics of heme in cytochrome c.
    Furlan S; Penna GL; Banci L; Mealli C
    J Phys Chem B; 2007 Feb; 111(5):1157-64. PubMed ID: 17266270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical force field parameters for the heme prosthetic group of cytochrome c.
    Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z
    J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2009 Jan; 48(1):331-8. PubMed ID: 19053349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation of the proximal histidine ligand in heme peroxidases.
    Heimdal J; Rydberg P; Ryde U
    J Phys Chem B; 2008 Feb; 112(8):2501-10. PubMed ID: 18251539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and dynamics in MbCN: CN--vibrational relaxation from molecular dynamics simulations.
    Danielsson J; Meuwly M
    J Phys Chem B; 2007 Jan; 111(1):218-26. PubMed ID: 17201446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; Négrerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures of heme a of cytochrome c oxidase in the redox states--charge density migration to the propionate groups of heme a.
    Takano Y; Nakamura H
    J Comput Chem; 2010 Apr; 31(5):954-62. PubMed ID: 19645053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonated heme.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Chemistry; 2007; 13(3):776-85. PubMed ID: 17042044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heme pocket structure and mobility on cytochrome c stability.
    Wen X; Patel KM; Russell BS; Bren KL
    Biochemistry; 2007 Mar; 46(9):2537-44. PubMed ID: 17279778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy.
    Ma JG; Laberge M; Song XZ; Jentzen W; Jia SL; Zhang J; Vanderkooi JM; Shelnutt JA
    Biochemistry; 1998 Apr; 37(15):5118-28. PubMed ID: 9548742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models.
    Oda A; Yamaotsu N; Hirono S
    J Comput Chem; 2005 Jun; 26(8):818-26. PubMed ID: 15812779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of heme-coordinating histidyl residues of cytochrome b5 based on the reactivity with diethylpyrocarbonate: a mechanism for the opening of axial imidazole rings.
    Nakanishi N; Takeuchi F; Okamoto H; Tamura A; Hori H; Tsubaki M
    J Biochem; 2006 Oct; 140(4):561-71. PubMed ID: 16963788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of selected FeNO7 complexes in heme and non-heme architectures: a density functional and multireference ab initio study.
    Radoń M; Broclawik E; Pierloot K
    J Phys Chem B; 2010 Jan; 114(3):1518-28. PubMed ID: 20047294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trp180 of endothelial NOS and Trp56 of bacterial saNOS modulate sigma bonding of the axial cysteine to the heme.
    Lang J; Driscoll D; Gélinas S; Rafferty SP; Couture M
    J Inorg Biochem; 2009 Jul; 103(7):1102-12. PubMed ID: 19539996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of thermodynamic and kinetic effects between the Leu32-->norvaline and Leu35-->norvaline substitutions of the three-fragment complex of cytochrome c.
    Picur B; Lisowski M; Taniuchi H; Poerio E
    Arch Biochem Biophys; 1994 Dec; 315(2):533-47. PubMed ID: 7986101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Inorg Chem; 2008 Sep; 47(17):7792-801. PubMed ID: 18681420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.