These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 17266288)

  • 1. Experimental gas-phase basicity scale of superbasic phosphazenes.
    Kaljurand I; Koppel IA; Kütt A; Rõõm EI; Rodima T; Koppel I; Mishima M; Leito I
    J Phys Chem A; 2007 Feb; 111(7):1245-50. PubMed ID: 17266288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
    Kolomeitsev AA; Koppel IA; Rodima T; Barten J; Lork E; Röschenthaler GV; Kaljurand I; Kütt A; Koppel I; Mäemets V; Leito I
    J Am Chem Soc; 2005 Dec; 127(50):17656-66. PubMed ID: 16351095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basicity of some P1 phosphazenes in water and in aqueous surfactant solution.
    Sooväli L; Rodima T; Kaljurand I; Kütt A; Koppel IA; Leito I
    Org Biomol Chem; 2006 Jun; 4(11):2100-5. PubMed ID: 16729124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-base equilibria in nonpolar media. 4. Extension of the self-consistent basicity scale in THF medium. Gas-phase basicities of phosphazenes.
    Kaljurand I; Rodima T; Pihl A; Mäemets V; Leito I; Koppel IA; Mishima M
    J Org Chem; 2003 Dec; 68(26):9988-93. PubMed ID: 14682692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution.
    Kaljurand I; Saame J; Rodima T; Koppel I; Koppel IA; Kögel JF; Sundermeyer J; Köhn U; Coles MP; Leito I
    J Phys Chem A; 2016 Apr; 120(16):2591-604. PubMed ID: 27093092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase basicity of methionine.
    Desaphy S; Malosse C; Bouchoux G
    J Mass Spectrom; 2008 Jan; 43(1):116-25. PubMed ID: 17726660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of Gaussian-3 lithium cation affinities of amides: implications for the gas-phase lithium cation basicity scale.
    Tsang Y; Siu FM; Ma NL; Tsang CW
    Rapid Commun Mass Spectrom; 2002; 16(3):229-37. PubMed ID: 11803545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-phase protonation thermochemistry of arginine.
    Bouchoux G; Desaphy S; Bourcier S; Malosse C; Bimbong RN
    J Phys Chem B; 2008 Mar; 112(11):3410-9. PubMed ID: 18288831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Basicities of Superbasic Phosphonium Ylides and Phosphazenes.
    Saame J; Rodima T; Tshepelevitsh S; Kütt A; Kaljurand I; Haljasorg T; Koppel IA; Leito I
    J Org Chem; 2016 Sep; 81(17):7349-61. PubMed ID: 27392255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brønsted basicities of diamines in the gas phase, acetonitrile, and tetrahydrofuran.
    Rõõm EI; Kütt A; Kaljurand I; Koppel I; Leito I; Koppel IA; Mishima M; Goto K; Miyahara Y
    Chemistry; 2007; 13(27):7631-43. PubMed ID: 17594707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales.
    Kaljurand I; Kütt A; Sooväli L; Rodima T; Mäemets V; Leito I; Koppel IA
    J Org Chem; 2005 Feb; 70(3):1019-28. PubMed ID: 15675863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in binding motif of protonated heterodimers containing valine and amines investigated using IRMPD spectroscopy between 800 and 3700 cm(-1) and theory.
    O'Brien JT; Prell JS; Steill JD; Oomens J; Williams ER
    J Am Chem Soc; 2009 Mar; 131(11):3905-12. PubMed ID: 19256491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase protonation thermochemistry of glutamic acid.
    Bouchoux G; Bimbong RN; Nacer F
    J Phys Chem A; 2009 Jun; 113(24):6666-76. PubMed ID: 19476324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gas phase Smiles rearrangement of anions PhO(CH(2))(n)O(-) (n = 2-4). A joint theoretical and experimental approach.
    Wang T; Nibbering NM; Bowie JH
    Org Biomol Chem; 2010 Sep; 8(18):4080-4. PubMed ID: 20644888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-phase thermochemical properties of the damaged base O(6)-methylguanine versus adenine and guanine.
    Zhachkina A; Liu M; Sun X; Amegayibor FS; Lee JK
    J Org Chem; 2009 Oct; 74(19):7429-40. PubMed ID: 19731957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality.
    Vazdar K; Margetić D; Kovačević B; Sundermeyer J; Leito I; Jahn U
    Acc Chem Res; 2021 Aug; 54(15):3108-3123. PubMed ID: 34308625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-phase protonation thermochemistry of adenosine.
    Touboul D; Bouchoux G; Zenobi R
    J Phys Chem B; 2008 Sep; 112(37):11716-25. PubMed ID: 18720985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles studies toward the design of silylene superbases: a density functional theory study.
    Biswas AK; Lo R; Ganguly B
    J Phys Chem A; 2013 Apr; 117(14):3109-17. PubMed ID: 23488654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas phase protonation thermochemistry of phenylalanine and tyrosine.
    Bouchoux G; Bourcier S; Blanc V; Desaphy S
    J Phys Chem B; 2009 Apr; 113(16):5549-62. PubMed ID: 19331397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Bases and beyond: The Prominent Contribution of Neutral Push-Pull Organic Molecules towards Superbases in the Gas Phase.
    Raczyńska ED; Gal JF; Maria PC
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.