BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17266345)

  • 1. Co-electrospinning of core-shell fibers using a single-nozzle technique.
    Bazilevsky AV; Yarin AL; Megaridis CM
    Langmuir; 2007 Feb; 23(5):2311-4. PubMed ID: 17266345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends.
    Peng M; Li D; Shen L; Chen Y; Zheng Q; Wang H
    Langmuir; 2006 Oct; 22(22):9368-74. PubMed ID: 17042555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.
    Kaerkitcha N; Chuangchote S; Sagawa T
    Nanoscale Res Lett; 2016 Dec; 11(1):186. PubMed ID: 27067734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying.
    Hwang YK; Jeong U; Cho EC
    Langmuir; 2008 Mar; 24(6):2446-51. PubMed ID: 18257594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes.
    Dong H; Jones WE
    Langmuir; 2006 Dec; 22(26):11384-7. PubMed ID: 17154629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids: Core-Shell Hollow Fibers, Porous Fibers, and Thin Films.
    Huang J; Cao Y; Huang Z; Imbraguglio SA; Wang Z; Peng X; Guo Z
    Macromol Mater Eng; 2016 Nov; 301(11):1327-1336. PubMed ID: 29104455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.
    Chen H; Wang N; Di J; Zhao Y; Song Y; Jiang L
    Langmuir; 2010 Jul; 26(13):11291-6. PubMed ID: 20337483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning.
    Zhao P; Jiang H; Pan H; Zhu K; Chen W
    J Biomed Mater Res A; 2007 Nov; 83(2):372-82. PubMed ID: 17450578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection.
    Wu XM; Branford-White CJ; Yu DG; Chatterton NP; Zhu LM
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):247-52. PubMed ID: 20870398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial Electrospinning and Characterization of Core-Shell Structured Cellulose Nanocrystal Reinforced PMMA/PAN Composite Fibers.
    Li C; Li Q; Ni X; Liu G; Cheng W; Han G
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Lauryl Alcohol on Morphology of Uniform Polystyrene-Poly(methyl methacrylate) Composite Microspheres Prepared by Porous Glass Membrane Emulsification Technique.
    Ma GH; Nagai M; Omi S
    J Colloid Interface Sci; 1999 Nov; 219(1):110-128. PubMed ID: 10527577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step production of polymeric microtubes by co-electrospinning.
    Dror Y; Salalha W; Avrahami R; Zussman E; Yarin AL; Dersch R; Greiner A; Wendorff JH
    Small; 2007 Jun; 3(6):1064-73. PubMed ID: 17315262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method.
    Jiang H; Zhao P; Zhu K
    Macromol Biosci; 2007 Apr; 7(4):517-25. PubMed ID: 17429829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coaxial electrospun poly(methyl methacrylate)-polyacrylonitrile nanofibers: atomic force microscopy and compositional characterization.
    Zander NE; Strawhecker KE; Orlicki JA; Rawlett AM; Beebe TP
    J Phys Chem B; 2011 Nov; 115(43):12441-7. PubMed ID: 21928836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning.
    Lin J; Ding B; Yu J
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):521-8. PubMed ID: 20356200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.
    Wang C; Hsiue TT
    Biomacromolecules; 2017 Sep; 18(9):2906-2917. PubMed ID: 28853864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annealing effect on electrospun polymer fibers and their transformation into polymer microspheres.
    Fan PW; Chen WL; Lee TH; Chen JT
    Macromol Rapid Commun; 2012 Feb; 33(4):343-9. PubMed ID: 22271584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desorption-limited mechanism of release from polymer nanofibers.
    Srikar R; Yarin AL; Megaridis CM; Bazilevsky AV; Kelley E
    Langmuir; 2008 Feb; 24(3):965-74. PubMed ID: 18076196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Preparation and Morphology of Uniform Artificial Polystyrene-Poly(methyl methacrylate) Composite Microspheres by Employing the SPG (Shirasu Porous Glass) Membrane Emulsification Technique.
    Ma GH; Nagai M; Omi S
    J Colloid Interface Sci; 1999 Jun; 214(2):264-282. PubMed ID: 10339367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plateau-Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core-Shell Polymer Fibers to Polymer Microbowls.
    Chiu YJ; Tseng HF; Lo YC; Wu BH; Chen JT
    Macromol Rapid Commun; 2017 Mar; 38(5):. PubMed ID: 28105783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.