These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17266532)

  • 1. Targeting nutrient uptake mechanisms in Plasmodium.
    Kirk K; Saliba KJ
    Curr Drug Targets; 2007 Jan; 8(1):75-88. PubMed ID: 17266532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channels and transporters as drug targets in the Plasmodium-infected erythrocyte.
    Kirk K
    Acta Trop; 2004 Feb; 89(3):285-98. PubMed ID: 14744555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pantothenate utilization by Plasmodium as a target for antimalarial chemotherapy.
    Spry C; van Schalkwyk DA; Strauss E; Saliba KJ
    Infect Disord Drug Targets; 2010 Jun; 10(3):200-16. PubMed ID: 20334619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H+-coupled pantothenate transport in the intracellular malaria parasite.
    Saliba KJ; Kirk K
    J Biol Chem; 2001 May; 276(21):18115-21. PubMed ID: 11278793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs.
    Biagini GA; Pasini EM; Hughes R; De Koning HP; Vial HJ; O'Neill PM; Ward SA; Bray PG
    Blood; 2004 Nov; 104(10):3372-7. PubMed ID: 15205262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane transport in the malaria parasite and its host erythrocyte.
    Kirk K; Lehane AM
    Biochem J; 2014 Jan; 457(1):1-18. PubMed ID: 24325549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport pathways in the malaria-infected erythrocyte. Their characterization and their use as potential targets for chemotherapy.
    Ginsburg H
    Biochem Pharmacol; 1994 Nov; 48(10):1847-56. PubMed ID: 7986195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes.
    Barnwell JW
    Blood Cells; 1990; 16(2-3):379-95. PubMed ID: 2257319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium permeomics: membrane transport proteins in the malaria parasite.
    Kirk K; Martin RE; Bröer S; Howitt SM; Saliba KJ
    Curr Top Microbiol Immunol; 2005; 295():325-56. PubMed ID: 16265897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Provitamin B5 (pantothenol) inhibits growth of the intraerythrocytic malaria parasite.
    Saliba KJ; Ferru I; Kirk K
    Antimicrob Agents Chemother; 2005 Feb; 49(2):632-7. PubMed ID: 15673744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback inhibition of pantothenate kinase regulates pantothenol uptake by the malaria parasite.
    Lehane AM; Marchetti RV; Spry C; van Schalkwyk DA; Teng R; Kirk K; Saliba KJ
    J Biol Chem; 2007 Aug; 282(35):25395-405. PubMed ID: 17581817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane transport in the malaria-infected erythrocyte.
    Kirk K
    Physiol Rev; 2001 Apr; 81(2):495-537. PubMed ID: 11274338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: structure, function, clinical relevance, and drug targets.
    Njunge JM; Ludewig MH; Boshoff A; Pesce ER; Blatch GL
    Curr Pharm Des; 2013; 19(3):387-403. PubMed ID: 22920898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Malaria Parasites Acquire Nutrients From Their Host.
    Counihan NA; Modak JK; de Koning-Ward TF
    Front Cell Dev Biol; 2021; 9():649184. PubMed ID: 33842474
    [No Abstract]   [Full Text] [Related]  

  • 15. Transport pathways in the malaria-infected erythrocyte: characterization and their use as potential targets for chemotherapy.
    Ginsburg H
    Mem Inst Oswaldo Cruz; 1994; 89 Suppl 2():99-109. PubMed ID: 7565142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleoside transport as a potential target for chemotherapy in malaria.
    Baldwin SA; McConkey GA; Cass CE; Young JD
    Curr Pharm Des; 2007; 13(6):569-80. PubMed ID: 17346175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic biochemical investigations as rationale for the design of original antimalarial drugs. An example of phospholipid metabolism.
    Vial HJ; Angelin ML; Elabbadi N; Calas M; Cordinas G; Giral L
    Mem Inst Oswaldo Cruz; 1992; 87 Suppl 3():251-61. PubMed ID: 1343697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do antimalarial drugs reach their intracellular targets?
    Basore K; Cheng Y; Kushwaha AK; Nguyen ST; Desai SA
    Front Pharmacol; 2015; 6():91. PubMed ID: 25999857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid transport in Plasmodium.
    Haldar K
    Infect Agents Dis; 1992 Oct; 1(5):254-62. PubMed ID: 1344664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: potential routes for targeting of drugs into infected cells.
    Ginsburg H; Stein WD
    Biosci Rep; 1987 Jun; 7(6):455-63. PubMed ID: 3322419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.