These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 17266782)

  • 41. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity.
    Mao W; Miyagishima KJ; Yao Y; Soreghan B; Sampath AP; Chen J
    J Biol Chem; 2013 Feb; 288(8):5257-67. PubMed ID: 23288843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoreceptors of Nrl -/- mice coexpress functional S- and M-cone opsins having distinct inactivation mechanisms.
    Nikonov SS; Daniele LL; Zhu X; Craft CM; Swaroop A; Pugh EN
    J Gen Physiol; 2005 Mar; 125(3):287-304. PubMed ID: 15738050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors.
    Kefalov VJ; Crouch RK; Cornwall MC
    Neuron; 2001 Mar; 29(3):749-55. PubMed ID: 11301033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins.
    Rosenzweig DH; Nair KS; Wei J; Wang Q; Garwin G; Saari JC; Chen CK; Smrcka AV; Swaroop A; Lem J; Hurley JB; Slepak VZ
    J Neurosci; 2007 May; 27(20):5484-94. PubMed ID: 17507570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Histopathologic and immunohistochemical study of dominant cone degeneration.
    To K; Adamian M; Jakobiec FA; Berson EL
    Am J Ophthalmol; 1998 Jul; 126(1):140-2. PubMed ID: 9683165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina.
    Stenkamp DL; Barthel LK; Raymond PA
    J Comp Neurol; 1997 Jun; 382(2):272-84. PubMed ID: 9183694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field.
    Nadal-Nicolás FM; Kunze VP; Ball JM; Peng BT; Krishnan A; Zhou G; Dong L; Li W
    Elife; 2020 May; 9():. PubMed ID: 32463363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of calbindin-positive cones in primates.
    Chiquet C; Dkhissi-Benyahya O; Chounlamountri N; Szel A; Degrip WJ; Cooper HM
    Neuroscience; 2002; 115(4):1323-33. PubMed ID: 12453500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding of more than one retinoid to visual opsins.
    Makino CL; Riley CK; Looney J; Crouch RK; Okada T
    Biophys J; 2010 Oct; 99(7):2366-73. PubMed ID: 20923672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Late stages of visual pigment photolysis in situ: cones vs. rods.
    Golobokova EY; Govardovskii VI
    Vision Res; 2006 Jul; 46(14):2287-97. PubMed ID: 16473387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning.
    Applebury ML; Antoch MP; Baxter LC; Chun LL; Falk JD; Farhangfar F; Kage K; Krzystolik MG; Lyass LA; Robbins JT
    Neuron; 2000 Sep; 27(3):513-23. PubMed ID: 11055434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of differentially expressed genes in carp rods and cones.
    Shimauchi-Matsukawa Y; Aman Y; Tachibanaki S; Kawamura S
    Mol Vis; 2008 Feb; 14():358-69. PubMed ID: 18334952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography.
    Hendrickson A; Djajadi HR; Nakamura L; Possin DE; Sajuthi D
    J Comp Neurol; 2000 Sep; 424(4):718-30. PubMed ID: 10931492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).
    Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM
    J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.