These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17267554)

  • 1. Mechanoelectric transduction of adult inner hair cells.
    Jia S; Dallos P; He DZ
    J Neurosci; 2007 Jan; 27(5):1006-14. PubMed ID: 17267554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.
    He DZ; Jia S; Dallos P
    Nature; 2004 Jun; 429(6993):766-70. PubMed ID: 15201911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How are inner hair cells stimulated? Evidence for multiple mechanical drives.
    Guinan JJ
    Hear Res; 2012 Oct; 292(1-2):35-50. PubMed ID: 22959529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inner hair cell stereocilia displacement in response to focal stimulation of the basilar membrane in the ex vivo gerbil cochlea.
    Zosuls A; Rupprecht LC; Mountain DC
    Hear Res; 2021 Dec; 412():108372. PubMed ID: 34775267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells.
    Stepanyan R; Frolenkov GI
    J Neurosci; 2009 Apr; 29(13):4023-34. PubMed ID: 19339598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI.
    Marcotti W; Corns LF; Goodyear RJ; Rzadzinska AK; Avraham KB; Steel KP; Richardson GP; Kros CJ
    J Physiol; 2016 Jul; 594(13):3667-81. PubMed ID: 27111754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation.
    Corns LF; Johnson SL; Roberts T; Ranatunga KM; Hendry A; Ceriani F; Safieddine S; Steel KP; Forge A; Petit C; Furness DN; Kros CJ; Marcotti W
    Nat Commun; 2018 Oct; 9(1):4015. PubMed ID: 30275467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells.
    Johnson SL; Kennedy HJ; Holley MC; Fettiplace R; Marcotti W
    J Neurosci; 2012 Aug; 32(31):10479-83. PubMed ID: 22855797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple modes of inner hair cell stimulation.
    Mountain DC; Cody AR
    Hear Res; 1999 Jun; 132(1-2):1-14. PubMed ID: 10392543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation.
    Caprara GA; Mecca AA; Wang Y; Ricci AJ; Peng AW
    J Neurosci; 2019 Nov; 39(46):9098-9106. PubMed ID: 31578232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells.
    Johnson SL; Marcotti W
    J Physiol; 2008 Feb; 586(4):1029-42. PubMed ID: 18174213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory transduction and adaptation in inner and outer hair cells of the mouse auditory system.
    Stauffer EA; Holt JR
    J Neurophysiol; 2007 Dec; 98(6):3360-9. PubMed ID: 17942617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct visualization of organ of corti kinematics in a hemicochlea.
    Hu X; Evans BN; Dallos P
    J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging.
    Beurg M; Fettiplace R; Nam JH; Ricci AJ
    Nat Neurosci; 2009 May; 12(5):553-8. PubMed ID: 19330002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2017 Jun; 141(6):4438. PubMed ID: 28679269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of cochlear inner hair cells.
    He DZ; Zheng J; Edge R; Dallos P
    Hear Res; 2000 Jul; 145(1-2):156-60. PubMed ID: 10867288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch.
    Chatterjee M; Zwislocki JJ
    Hear Res; 1997 Sep; 111(1-2):65-75. PubMed ID: 9307312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea.
    Beurg M; Cui R; Goldring AC; Ebrahim S; Fettiplace R; Kachar B
    Nat Commun; 2018 Jun; 9(1):2185. PubMed ID: 29872055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of inner hair cell loss on the instantaneous frequency of the cochlear microphonic.
    Chertoff ME; Amani-Taleshi D; Guo Y; Burkard R
    Hear Res; 2002 Dec; 174(1-2):93-100. PubMed ID: 12433400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.