BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17267561)

  • 1. Drosophila cacophony channels: a major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation.
    Peng IF; Wu CF
    J Neurosci; 2007 Jan; 27(5):1072-81. PubMed ID: 17267561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.
    Gu H; Jiang SA; Campusano JM; Iniguez J; Su H; Hoang AA; Lavian M; Sun X; O'Dowd DK
    J Neurophysiol; 2009 Jan; 101(1):42-53. PubMed ID: 19004991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-cellular Ca2+ dynamics affected by voltage- and Ca2+-gated K+ channels: Regulation of the soma-growth cone disparity and the quiescent state in Drosophila neurons.
    Berke BA; Lee J; Peng IF; Wu CF
    Neuroscience; 2006 Oct; 142(3):629-44. PubMed ID: 16919393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K
    Saur T; Peng IF; Jiang P; Gong N; Yao WD; Xu TL; Wu CF
    J Neurogenet; 2016; 30(3-4):259-275. PubMed ID: 27868467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous Tagging Reveals Differential Regulation of Ca
    Gratz SJ; Goel P; Bruckner JJ; Hernandez RX; Khateeb K; Macleod GT; Dickman D; O'Connor-Giles KM
    J Neurosci; 2019 Mar; 39(13):2416-2429. PubMed ID: 30692227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic currents of Drosophila neurons in embryonic cultures.
    Byerly L; Leung HT
    J Neurosci; 1988 Nov; 8(11):4379-93. PubMed ID: 2460598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of the electrophysiological properties of thalamocortical relay neurons.
    McCormick DA; Huguenard JR
    J Neurophysiol; 1992 Oct; 68(4):1384-400. PubMed ID: 1331356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms.
    Wisgirda ME; Dryer SE
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2858-62. PubMed ID: 8146200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ.
    Worrell JW; Levine RB
    J Neurophysiol; 2008 Aug; 100(2):868-78. PubMed ID: 18550721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+, K+ and Ca2+ currents in identified leech neurones in culture.
    Stewart RR; Nicholls JG; Adams WB
    J Exp Biol; 1989 Jan; 141():1-20. PubMed ID: 2538540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of Shaker K+ channels in cultured Drosophila "giant" neurons derived from Sh cDNA transformants: distinct properties, distribution, and turnover.
    Zhao ML; Sable EO; Iverson LE; Wu CF
    J Neurosci; 1995 Feb; 15(2):1406-18. PubMed ID: 7869107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT; Chen L; Karunanithi S; Peloquin JB; Atwood HL; McRory JE; Zamponi GW; Charlton MP
    Eur J Neurosci; 2006 Jun; 23(12):3230-44. PubMed ID: 16820014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of M-type K+ and N-type Ca2+ channels by the human gonadotropin-releasing-hormone receptor heterologously expressed in adult neurons.
    Lewis DL; Ikeda SR
    Neuroendocrinology; 1997 Oct; 66(4):235-45. PubMed ID: 9349657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila.
    Lee J; Wu CF
    J Neurosci; 2010 Nov; 30(47):15821-33. PubMed ID: 21106821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes.
    Yuan XJ
    Circ Res; 1995 Aug; 77(2):370-8. PubMed ID: 7542182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.
    Gasque G; Labarca P; Reynaud E; Darszon A
    J Neurosci; 2005 Mar; 25(9):2348-58. PubMed ID: 15745961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.