These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17267645)

  • 1. Plasticity and superplasticity in the acclimation potential of the Antarctic mite Halozetes belgicae (Michael).
    Hawes TC; Bale JS; Worland MR; Convey P
    J Exp Biol; 2007 Feb; 210(Pt 4):593-601. PubMed ID: 17267645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island.
    Deere JA; Sinclair BJ; Marshall DJ; Chown SL
    J Insect Physiol; 2006 Jul; 52(7):693-700. PubMed ID: 16750541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial acclimation and the Bogert effect.
    Marais E; Chown SL
    Ecol Lett; 2008 Oct; 11(10):1027-36. PubMed ID: 18616546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance.
    Deere JA; Chown SL
    Am Nat; 2006 Nov; 168(5):630-44. PubMed ID: 17080362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae).
    Block W; Worland MR
    Cryobiology; 2001 May; 42(3):170-81. PubMed ID: 11578116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus.
    Elnitsky MA; Benoit JB; Denlinger DL; Lee RE
    J Insect Physiol; 2008; 54(10-11):1432-9. PubMed ID: 18761345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.
    Teets NM; Denlinger DL
    J Exp Biol; 2014 Jan; 217(Pt 1):84-93. PubMed ID: 24353207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis.
    Terblanche JS; Marais E; Chown SL
    J Insect Physiol; 2007 May; 53(5):455-62. PubMed ID: 17368475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.
    Jakobs R; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2015 Aug; 79():1-9. PubMed ID: 25982520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ; Bale JS
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (Limnodynastes peronii).
    Rogers KD; Thompson MB; Seebacher F
    J Exp Biol; 2007 Aug; 210(Pt 16):2932-8. PubMed ID: 17690242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do mitochondrial properties explain intraspecific variation in thermal tolerance?
    Fangue NA; Richards JG; Schulte PM
    J Exp Biol; 2009 Feb; 212(Pt 4):514-22. PubMed ID: 19181899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological variation and phenotypic plasticity: a response to 'Plasticity in arthropod cryotypes' by Hawes and Bale.
    Chown SL; Sørensen JG; Sinclair BJ
    J Exp Biol; 2008 Nov; 211(Pt 21):3353-7. PubMed ID: 18931308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.