BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 17267761)

  • 1. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system.
    Lee RH; Mills EA; Schwartz N; Bell MR; Deeg KE; Ruthazer ES; Marsh-Armstrong N; Aizenman CD
    Neural Dev; 2010 Jan; 5():2. PubMed ID: 20067608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors.
    Lien CC; Mu Y; Vargas-Caballero M; Poo MM
    Nat Neurosci; 2006 Mar; 9(3):372-80. PubMed ID: 16474391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines.
    Aizenman CD; Muñoz-Elías G; Cline HT
    Neuron; 2002 May; 34(4):623-34. PubMed ID: 12062045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q; Tao HW; Poo MM
    Science; 2003 Jun; 300(5627):1953-7. PubMed ID: 12817152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses.
    Yanagisawa T; Tsumoto T; Kimura F
    Eur J Neurosci; 2004 Dec; 20(11):3006-18. PubMed ID: 15579155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of input specificity of ltp during development of retinotectal connections in vivo.
    Tao HW; Zhang LI; Engert F; Poo M
    Neuron; 2001 Aug; 31(4):569-80. PubMed ID: 11545716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
    Shen W; McKeown CR; Demas JA; Cline HT
    J Neurophysiol; 2011 Nov; 106(5):2285-302. PubMed ID: 21795628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual input induces long-term potentiation of developing retinotectal synapses.
    Zhang LI; Tao HW; Poo M
    Nat Neurosci; 2000 Jul; 3(7):708-15. PubMed ID: 10862704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of multisensory convergence in the Xenopus optic tectum.
    Deeg KE; Sears IB; Aizenman CD
    J Neurophysiol; 2009 Dec; 102(6):3392-404. PubMed ID: 19793878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
    Pratt KG; Dong W; Aizenman CD
    Nat Neurosci; 2008 Apr; 11(4):467-75. PubMed ID: 18344990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical window for cooperation and competition among developing retinotectal synapses.
    Zhang LI; Tao HW; Holt CE; Harris WA; Poo M
    Nature; 1998 Sep; 395(6697):37-44. PubMed ID: 9738497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system.
    Vislay-Meltzer RL; Kampff AR; Engert F
    Neuron; 2006 Apr; 50(1):101-14. PubMed ID: 16600859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the
    Pratt KG
    Cold Spring Harb Protoc; 2021 Nov; 2021(11):. PubMed ID: 33536288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TORC1 selectively regulates synaptic maturation and input convergence in the developing visual system.
    Gobert D; Schohl A; Kutsarova E; Ruthazer ES
    Dev Neurobiol; 2020 Sep; 80(9-10):332-350. PubMed ID: 32996262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of a central glutamatergic synapse.
    Wu G; Malinow R; Cline HT
    Science; 1996 Nov; 274(5289):972-6. PubMed ID: 8875937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.