These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 17267811)
1. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Gat-Viks I; Shamir R Genome Res; 2007 Mar; 17(3):358-67. PubMed ID: 17267811 [TBL] [Abstract][Full Text] [Related]
2. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. Zi Z; Liebermeister W; Klipp E PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584 [TBL] [Abstract][Full Text] [Related]
4. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Proft M; Gibbons FD; Copeland M; Roth FP; Struhl K Eukaryot Cell; 2005 Aug; 4(8):1343-52. PubMed ID: 16087739 [TBL] [Abstract][Full Text] [Related]
5. Quantitative inference of dynamic regulatory pathways via microarray data. Chang WC; Li CW; Chen BS BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298 [TBL] [Abstract][Full Text] [Related]
6. Computational discovery of gene modules and regulatory networks. Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958 [TBL] [Abstract][Full Text] [Related]
7. Structure and function of a transcriptional network activated by the MAPK Hog1. Capaldi AP; Kaplan T; Liu Y; Habib N; Regev A; Friedman N; O'Shea EK Nat Genet; 2008 Nov; 40(11):1300-6. PubMed ID: 18931682 [TBL] [Abstract][Full Text] [Related]
8. Activated signal transduction kinases frequently occupy target genes. Pokholok DK; Zeitlinger J; Hannett NM; Reynolds DB; Young RA Science; 2006 Jul; 313(5786):533-6. PubMed ID: 16873666 [TBL] [Abstract][Full Text] [Related]
9. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Proft M; Mas G; de Nadal E; Vendrell A; Noriega N; Struhl K; Posas F Mol Cell; 2006 Jul; 23(2):241-50. PubMed ID: 16857590 [TBL] [Abstract][Full Text] [Related]
10. Toward a genomic view of the gene expression program regulated by osmostress in yeast. Martínez-Montañés F; Pascual-Ahuir A; Proft M OMICS; 2010 Dec; 14(6):619-27. PubMed ID: 20726780 [TBL] [Abstract][Full Text] [Related]
11. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Bai C; Tesker M; Engelberg D Mol Biol Cell; 2015 Jun; 26(12):2357-74. PubMed ID: 25904326 [TBL] [Abstract][Full Text] [Related]
12. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. De Nadal E; Zapater M; Alepuz PM; Sumoy L; Mas G; Posas F Nature; 2004 Jan; 427(6972):370-4. PubMed ID: 14737171 [TBL] [Abstract][Full Text] [Related]
13. Yeast osmoregulation. Hohmann S; Krantz M; Nordlander B Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410 [TBL] [Abstract][Full Text] [Related]
14. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele. Westfall PJ; Thorner J Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207 [TBL] [Abstract][Full Text] [Related]
15. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. Rep M; Krantz M; Thevelein JM; Hohmann S J Biol Chem; 2000 Mar; 275(12):8290-300. PubMed ID: 10722658 [TBL] [Abstract][Full Text] [Related]