These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1726804)

  • 21. Translation processes in the E. coli cell-free system in the presence of natural messenger RNA's.
    Szafránski P; Passent J; Gocman K
    Acta Biochim Pol; 1967; 14(4):415-25. PubMed ID: 4871144
    [No Abstract]   [Full Text] [Related]  

  • 22. Domain II of Thermus thermophilus ribosomal protein L1 hinders recognition of its mRNA.
    Tishchenko S; Kljashtorny V; Kostareva O; Nevskaya N; Nikulin A; Gulak P; Piendl W; Garber M; Nikonov S
    J Mol Biol; 2008 Nov; 383(2):301-5. PubMed ID: 18778715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation initiation and the fate of bacterial mRNAs.
    Kaberdin VR; Bläsi U
    FEMS Microbiol Rev; 2006 Nov; 30(6):967-79. PubMed ID: 16989654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5' rpoS mRNA leader region.
    Updegrove T; Wilf N; Sun X; Wartell RM
    Biochemistry; 2008 Oct; 47(43):11184-95. PubMed ID: 18826256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction.
    Kaminishi T; Wilson DN; Takemoto C; Harms JM; Kawazoe M; Schluenzen F; Hanawa-Suetsugu K; Shirouzu M; Fucini P; Yokoyama S
    Structure; 2007 Mar; 15(3):289-97. PubMed ID: 17355865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into the interaction of ribosomal protein L1 with RNA.
    Nevskaya N; Tishchenko S; Volchkov S; Kljashtorny V; Nikonova E; Nikonov O; Nikulin A; Köhrer C; Piendl W; Zimmermann R; Stockley P; Garber M; Nikonov S
    J Mol Biol; 2006 Jan; 355(4):747-59. PubMed ID: 16330048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Both temperature and medium composition regulate RNase E processing efficiency of the rpsO mRNA coding for ribosomal protein S15 of Escherichia coli.
    Le Derout J; Régnier P; Hajnsdorf E
    J Mol Biol; 2002 May; 319(2):341-9. PubMed ID: 12051911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of RNA silencing by Hfq-binding small RNAs.
    Aiba H
    Curr Opin Microbiol; 2007 Apr; 10(2):134-9. PubMed ID: 17383928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Termination-free prokaryotic protein translation by using anticodon-adjusted E. coli tRNASer as unified suppressors of the UAA/UGA/UAG stop codons. Read-through ribosome display of full-length DHFR with translated UTR as a buried spacer arm.
    Ogawa A; Sando S; Aoyama Y
    Chembiochem; 2006 Feb; 7(2):249-52. PubMed ID: 16381047
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanism of post-segregational killing by hok-homologue pnd of plasmid R483: two translational control elements in the pnd mRNA.
    Nielsen AK; Gerdes K
    J Mol Biol; 1995 Jun; 249(2):270-82. PubMed ID: 7783193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An antisense/target RNA duplex or a strong intramolecular RNA structure 5' of a translation initiation signal blocks ribosome binding: the case of plasmid R1.
    Malmgren C; Engdahl HM; Romby P; Wagner EG
    RNA; 1996 Oct; 2(10):1022-32. PubMed ID: 8849778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A long-lived batch reaction system of cell-free protein synthesis.
    Kawarasaki Y; Kawai T; Nakano H; Yamane T
    Anal Biochem; 1995 Apr; 226(2):320-4. PubMed ID: 7793634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a chaperone-deficient system by fractionation of a prokaryotic coupled transcription/translation system.
    Kudlicki W; Mouat M; Walterscheid JP; Kramer G; Hardesty B
    Anal Biochem; 1994 Feb; 217(1):12-9. PubMed ID: 7911283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase.
    Torres-Larios A; Dock-Bregeon AC; Romby P; Rees B; Sankaranarayanan R; Caillet J; Springer M; Ehresmann C; Ehresmann B; Moras D
    Nat Struct Biol; 2002 May; 9(5):343-7. PubMed ID: 11953757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biosynthesis of colicin A : existence of pauses in the translation of messenger RNA].
    Varenne S; Cavard D; Lazdunski C
    C R Seances Acad Sci III; 1981 Mar; 292(11):701-4. PubMed ID: 6166409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using the lambdaN peptide to tether proteins to RNAs.
    Baron-Benhamou J; Gehring NH; Kulozik AE; Hentze MW
    Methods Mol Biol; 2004; 257():135-54. PubMed ID: 14770003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous cell-free protein synthesis directed by messenger DNA and catalyzed by extract of Thermus thermophilus HB27.
    Uzawa T; Yamagishi A; Oshima T
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):639-42. PubMed ID: 12723617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperativity of stabilized mRNA and enhanced translation activity in the cell-free system.
    Kitaoka Y; Nishimura N; Niwano M
    J Biotechnol; 1996 Jul; 48(1-2):1-8. PubMed ID: 8818268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translation inhibition by phosphorothioate oligodeoxynucleotides in cell-free systems.
    Ghosh MK; Ghosh K; Cohen JS
    Antisense Res Dev; 1992; 2(2):111-8. PubMed ID: 1327332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorothioate Modification of mRNA Accelerates the Rate of Translation Initiation to Provide More Efficient Protein Synthesis.
    Kawaguchi D; Kodama A; Abe N; Takebuchi K; Hashiya F; Tomoike F; Nakamoto K; Kimura Y; Shimizu Y; Abe H
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17403-17407. PubMed ID: 32627275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.