BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17268066)

  • 1. Hyphal formation of Candida albicans is inhibited by salivary mucin.
    Ogasawara A; Komaki N; Akai H; Hori K; Watanabe H; Watanabe T; Mikami T; Matsumoto T
    Biol Pharm Bull; 2007 Feb; 30(2):284-6. PubMed ID: 17268066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid.
    Chung SC; Kim TI; Ahn CH; Shin J; Oh KB
    FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyphal formation of Candida albicans is controlled by electron transfer system.
    Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biochem Biophys Res Commun; 2006 Sep; 348(1):206-11. PubMed ID: 16876761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of propranolol on hyphae formation signal in Candida albicans.
    Ueno Y; Maruyama N; Kanno M; Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biol Pharm Bull; 2009 Jan; 32(1):129-31. PubMed ID: 19122294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans.
    Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP
    J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression.
    Shareck J; Nantel A; Belhumeur P
    Eukaryot Cell; 2011 Apr; 10(4):565-77. PubMed ID: 21357478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of antifungal drugs on proliferation signals in Candida albicans.
    Matsuki M; Kanatsu H; Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biol Pharm Bull; 2006 May; 29(5):919-22. PubMed ID: 16651719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes.
    Belmadani A; Semlali A; Rouabhia M
    J Appl Microbiol; 2018 Jul; 125(1):72-83. PubMed ID: 29476689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response.
    Piispanen AE; Bonnefoi O; Carden S; Deveau A; Bassilana M; Hogan DA
    Eukaryot Cell; 2011 Nov; 10(11):1473-84. PubMed ID: 21908593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-independent signal pathways stimulate hyphal morphogenesis in Candida albicans.
    Parrino SM; Si H; Naseem S; Groudan K; Gardin J; Konopka JB
    Mol Microbiol; 2017 Mar; 103(5):764-779. PubMed ID: 27888610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition.
    Su C; Yu J; Sun Q; Liu Q; Lu Y
    Mol Microbiol; 2018 May; 108(4):410-423. PubMed ID: 29485686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and metabolic characterization of a Candida albicans mutant resistant to the antimicrobial peptide MUC7 12-mer.
    Lis M; Bobek LA
    FEMS Immunol Med Microbiol; 2008 Oct; 54(1):80-91. PubMed ID: 18680518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth.
    Elson SL; Noble SM; Solis NV; Filler SG; Johnson AD
    PLoS Genet; 2009 Sep; 5(9):e1000664. PubMed ID: 19779551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling.
    Koch B; Barugahare AA; Lo TL; Huang C; Schittenhelm RB; Powell DR; Beilharz TH; Traven A
    Cell Rep; 2018 Nov; 25(8):2244-2258.e7. PubMed ID: 30463019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of Candida albicans to new synthetic sulfone derivatives.
    Staniszewska M; Bondaryk M; Ochal Z
    Arch Pharm (Weinheim); 2015 Feb; 348(2):132-43. PubMed ID: 25641692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Candida albicans transformation in response to changes of pH.
    Konno N; Ishii M; Nagai A; Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biol Pharm Bull; 2006 May; 29(5):923-6. PubMed ID: 16651720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.
    de Barros PP; Freire F; Rossoni RD; Junqueira JC; Jorge AOC
    Folia Microbiol (Praha); 2017 Jul; 62(4):317-323. PubMed ID: 28164244
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Çolak A; Ikeh MAC; Nobile CJ; Baykara MZ
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148826
    [No Abstract]   [Full Text] [Related]  

  • 20. The AAA ATPase Vps4 Plays Important Roles in Candida albicans Hyphal Formation and is Inhibited by DBeQ.
    Zhang Y; Li W; Chu M; Chen H; Yu H; Fang C; Sun N; Wang Q; Luo T; Luo K; She X; Zhang M; Yang D
    Mycopathologia; 2016 Jun; 181(5-6):329-39. PubMed ID: 26700222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.