These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1726879)

  • 1. Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes.
    Hahn D; Kester R; Starrenburg MJ; Akkermans AD
    Arch Microbiol; 1990; 154(4):329-35. PubMed ID: 1726879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity of Datisca cannabina-compatible Frankia strains as determined by sequence analysis of the PCR-amplified 16S rRNA gene.
    Mirza MS; Hameed S; Akkermans AD
    Appl Environ Microbiol; 1994 Jul; 60(7):2371-6. PubMed ID: 7521157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants.
    Wolters DJ; Van Dijk C; Zoetendal EG; Akkermans AD
    Mol Ecol; 1997 Oct; 6(10):971-81. PubMed ID: 9348704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a ribosomal RNA operon in the actinomycete Frankia.
    Normand P; Cournoyer B; Simonet P; Nazaret S
    Gene; 1992 Feb; 111(1):119-24. PubMed ID: 1372279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays.
    Small J; Call DR; Brockman FJ; Straub TM; Chandler DP
    Appl Environ Microbiol; 2001 Oct; 67(10):4708-16. PubMed ID: 11571176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH).
    Urzì C; La Cono V; Stackebrandt E
    Environ Microbiol; 2004 Jul; 6(7):678-85. PubMed ID: 15186346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.
    Schuppler M; Wagner M; Schön G; Göbel UB
    Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():249-259. PubMed ID: 9467916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saprophytic growth of inoculated Frankia sp. in soil microcosms.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2007 Dec; 62(3):280-9. PubMed ID: 17916077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes.
    Simonet P; Normand P; Moiroud A; Bardin R
    Arch Microbiol; 1990; 153(3):235-40. PubMed ID: 2334247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil.
    Battenberg K; Wren JA; Hillman J; Edwards J; Huang L; Berry AM
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence versus structure for the direct detection of 16S rRNA on planar oligonucleotide microarrays.
    Chandler DP; Newton GJ; Small JA; Daly DS
    Appl Environ Microbiol; 2003 May; 69(5):2950-8. PubMed ID: 12732571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frankia genus-specific characterization by polymerase chain reaction.
    Simonet P; Grosjean MC; Misra AK; Nazaret S; Cournoyer B; Normand P
    Appl Environ Microbiol; 1991 Nov; 57(11):3278-86. PubMed ID: 1781685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae.
    Normand P; Orso S; Cournoyer B; Jeannin P; Chapelon C; Dawson J; Evtushenko L; Misra AK
    Int J Syst Bacteriol; 1996 Jan; 46(1):1-9. PubMed ID: 8573482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of nif sequences in Frankia.
    Normand P; Simonet P; Bardin R
    Mol Gen Genet; 1988 Aug; 213(2-3):238-46. PubMed ID: 3185502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular structure of the Frankia spp. nifD-K intergenic spacer and design of Frankia genus compatible primer.
    Nalin R; Domenach AM; Normand P
    Mol Ecol; 1995 Aug; 4(4):483-91. PubMed ID: 8574444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteroduplex structures in 16S-23S rRNA intergenic transcribed spacer PCR products reveal ribosomal interoperonic polymorphisms within single Frankia strains.
    Gtari M; Brusetti L; Cherif A; Boudabous A; Daffonchio D
    J Appl Microbiol; 2007 Oct; 103(4):1031-40. PubMed ID: 17897207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis.
    Felske A; Engelen B; Nübel U; Backhaus H
    Appl Environ Microbiol; 1996 Nov; 62(11):4162-7. PubMed ID: 8900007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology of some actinomycete genera.
    Ensign JC; Normand P; Burden JP; Yallop CA
    Res Microbiol; 1993 Oct; 144(8):657-60. PubMed ID: 8140284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotide probes for Bordetella bronchiseptica based on 16S ribosomal RNA sequences.
    Taneda A; Futo S; Mitsuse S; Seto Y; Okada M; Sakano T
    Vet Microbiol; 1994 Dec; 42(4):297-305. PubMed ID: 9133055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of 16S ribosomal RNA hybridization on reusable DNA arrays using surface plasmon resonance imaging.
    Nelson BP; Liles MR; Frederick KB; Corn RM; Goodman RM
    Environ Microbiol; 2002 Nov; 4(11):735-43. PubMed ID: 12460281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.