These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17268868)

  • 1. Effect of gelatin on the drug release behaviors for the organic hybrid gels based on N-isopropylacrylamide and gelatin.
    Lee WF; Lee SC
    J Mater Sci Mater Med; 2007 Jun; 18(6):1089-96. PubMed ID: 17268868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of caffeine release from crosslinked water-swellable gelatin and gelatin-maltodextrin hydrogels.
    Abbasi A; Eslamian M; Rousseau D
    Drug Deliv; 2008 Sep; 15(7):455-63. PubMed ID: 18712623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery.
    Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J
    Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio.
    Lai JY
    Drug Des Devel Ther; 2013; 7():1273-85. PubMed ID: 24187486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genipin-Crosslinked Gelatin-Based Emulgels: an Insight into the Thermal, Mechanical, and Electrical Studies.
    Mallick SP; Sagiri SS; Singh VK; Behera B; Thirugnanam A; Pradhan DK; Bhattacharya MK; Pal K
    AAPS PharmSciTech; 2015 Dec; 16(6):1254-62. PubMed ID: 25771735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron.
    Kuijpers AJ; van Wachem PB; van Luyn MJ; Plantinga JA; Engbers GH; Krijgsveld J; Zaat SA; Dankert J; Feijen J
    J Biomed Mater Res; 2000 Jul; 51(1):136-45. PubMed ID: 10813755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery.
    Sung B; Kim C; Kim MH
    J Colloid Interface Sci; 2015 Jul; 450():26-33. PubMed ID: 25797395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin interpenetration in poly N-isopropylacrylamide network reduces the compressive modulus of the scaffold: A property employed to mimic hepatic matrix stiffness.
    Sarkar J; Kamble SC; Patil R; Kumar A; Gosavi SW
    Biotechnol Bioeng; 2020 Feb; 117(2):567-579. PubMed ID: 31691950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies.
    Liang HC; Chang WH; Lin KJ; Sung HW
    J Biomed Mater Res A; 2003 May; 65(2):271-82. PubMed ID: 12734822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery.
    Madhusudana Rao K; Krishna Rao KS; Ramanjaneyulu G; Ha CS
    Int J Pharm; 2015 Jan; 478(2):788-95. PubMed ID: 25528297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use.
    Lou X; Chirila TV
    J Biomater Appl; 1999 Oct; 14(2):184-91. PubMed ID: 10549004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micron- and nano-sized poly(N-isopropylacrylamide-co-acrylic acid) latex syntheses and their applications for controlled drug release.
    Lue SJ; Chen BW; Shih CM; Chou FY; Lai JY; Chiu WY
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5305-15. PubMed ID: 23882758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Controlled release using temperature-responsive poly(N-isopropylacrylamide) gel].
    Yoshida R
    Nihon Rinsho; 1998 Mar; 56(3):670-4. PubMed ID: 9549354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels.
    Siegwart DJ; Bencherif SA; Srinivasan A; Hollinger JO; Matyjaszewski K
    J Biomed Mater Res A; 2008 Nov; 87(2):345-58. PubMed ID: 18181103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers.
    Zhang Z; Krishna N; Lettinga MP; Vermant J; Grelet E
    Langmuir; 2009 Feb; 25(4):2437-42. PubMed ID: 19166277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking.
    Kokufuta E
    Langmuir; 2005 Oct; 21(22):10004-15. PubMed ID: 16229520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine.
    Lai JY; Hsieh AC
    Biomaterials; 2012 Mar; 33(7):2372-87. PubMed ID: 22182746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of DSBP from genipin-crosslinked gelatin thin films.
    Abbasi A; Eslamian M; Heyd D; Rousseau D
    Pharm Dev Technol; 2008; 13(6):549-57. PubMed ID: 18720250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo.
    Bearat HH; Lee BH; Vernon BL
    Acta Biomater; 2012 Oct; 8(10):3629-42. PubMed ID: 22705635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of bi-nanoparticle on dose enhancement effect in two different polymer gel dosimeter using spectrophotometer.
    Sathiyaraj P; Jebaseelan Samuel EJ
    J Cancer Res Ther; 2018; 14(3):662-665. PubMed ID: 29893336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.