These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17268924)

  • 1. Monitoring of aerial pollutants emitted from Swine houses in Korea.
    Kim KY; Ko HJ; Kim HT; Kim YS; Roh YM; Lee CM; Kim CN
    Environ Monit Assess; 2007 Oct; 133(1-3):255-66. PubMed ID: 17268924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Field study of concentrations and emissions of particulate contaminants by types of swine houses in Korea].
    Kim KY; Lee KJ; Park JB; Kim CN
    J Prev Med Public Health; 2005 May; 38(2):141-6. PubMed ID: 16315750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Nature and amount of aerial pollutants from livestock buildings].
    Hartung J
    Dtsch Tierarztl Wochenschr; 1998 Jun; 105(6):213-6. PubMed ID: 9693454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of ammonia and hydrogen sulfide emitted from pig buildings in Korea.
    Kim KY; Jong Ko H; Tae Kim H; Shin Kim Y; Man Roh Y; Min Lee C; Nyon Kim C
    J Environ Manage; 2008 Jul; 88(2):195-202. PubMed ID: 17391836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Korean farmer's exposure level to dust in pig buildings.
    Kim KY; Ko HJ; Kim YS; Kim CN
    Ann Agric Environ Med; 2008; 15(1):51-8. PubMed ID: 18581979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of three egg production systems - Part III: Airborne bacteria concentrations and emissions.
    Zhao Y; Zhao D; Ma H; Liu K; Atilgan A; Xin H
    Poult Sci; 2016 Jul; 95(7):1473-1481. PubMed ID: 26994201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses.
    Chang CW; Chung H; Huang CF; Su HJ
    Ann Occup Hyg; 2001 Aug; 45(6):457-65. PubMed ID: 11513795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ventilation rate on gradient of aerial contaminants in the confinement pig building.
    Kim KY; Ko HJ; Kim HT; Kim YS; Roh YM; Kim CN
    Environ Res; 2007 Mar; 103(3):352-7. PubMed ID: 17184767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne dust, ammonia, microorganisms, and antigens in pig confinement houses and the respiratory health of exposed farm workers.
    Crook B; Robertson JF; Glass SA; Botheroyd EM; Lacey J; Topping MD
    Am Ind Hyg Assoc J; 1991 Jul; 52(7):271-9. PubMed ID: 1951065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of extreme seasons on airborne pollutant levels in a pig-confinement building.
    Kim KY; Ko HJ; Kim HT; Kim YS; Roh YM; Lee CM; Kim CN
    Arch Environ Occup Health; 2007; 62(1):27-32. PubMed ID: 18171644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of manual feeding on the level of farmer's exposure to airborne contaminants in the confinement nursery pig house.
    Kim KY; Ko HJ; Kim HT; Kim CN; Kim YS; Roh YM
    Ind Health; 2008 Apr; 46(2):138-43. PubMed ID: 18413966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor distribution characteristics of airborne bacteria in pig buildings as influenced by season and housing type.
    Kim KY; Ko HJ
    Asian-Australas J Anim Sci; 2019 May; 32(5):742-747. PubMed ID: 30145874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile organic compounds at swine facilities: a critical review.
    Ni JQ; Robarge WP; Xiao C; Heber AJ
    Chemosphere; 2012 Oct; 89(7):769-88. PubMed ID: 22682363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial distributions of aerial contaminants in an enclosed pig building in winter.
    Kim KY; Ko HJ; Lee KJ; Park JB; Kim CN
    Environ Res; 2005 Oct; 99(2):150-7. PubMed ID: 16194664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of environmental factors on airborne fungi in houses of Santa Fe City, Argentina.
    Basilico Mde L; Chiericatti C; Aringoli EE; Althaus RL; Basilico JC
    Sci Total Environ; 2007 Apr; 376(1-3):143-50. PubMed ID: 17320936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: a meta-analysis.
    Liu Z; Powers W; Murphy J; Maghirang R
    J Anim Sci; 2014 Apr; 92(4):1656-65. PubMed ID: 24492567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of building maintenance, environmental factors, and seasons on airborne contaminants of swine confinement buildings.
    Duchaine C; Grimard Y; Cormier Y
    AIHAJ; 2000; 61(1):56-63. PubMed ID: 10772615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spraying biological additives for reduction of dust and bioaerosol in a confinement swine house.
    Kim KY; Ko HJ; Kim HT; Kim CN
    Ann Agric Environ Med; 2006; 13(1):133-138. PubMed ID: 16841885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microclimate on particulate matter, airborne bacteria, and odorous compounds in swine nursery houses.
    Yao HQ; Choi HL; Lee JH; Suresh A; Zhu K
    J Anim Sci; 2010 Nov; 88(11):3707-14. PubMed ID: 20601522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of in-barn manure separation on biological air quality in an experimental setup identical to that in swine buildings.
    Lavoie J; Godbout S; Lemay SP; Belzile M
    J Agric Saf Health; 2009 Jul; 15(3):225-40. PubMed ID: 19728546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.