BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 17269660)

  • 1. In silico mutation of cysteine residues in the ligand-binding domain of an N-methyl-D-aspartate receptor.
    Kaye SL; Sansom MS; Biggin PC
    Biochemistry; 2007 Feb; 46(8):2136-45. PubMed ID: 17269660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands.
    Moretti L; Pentikäinen OT; Settimo L; Johnson MS
    J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of NR2B-selective antagonist recognition by N-methyl-D-aspartate receptors.
    Mony L; Krzaczkowski L; Leonetti M; Le Goff A; Alarcon K; Neyton J; Bertrand HO; Acher F; Paoletti P
    Mol Pharmacol; 2009 Jan; 75(1):60-74. PubMed ID: 18923063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural consequences of D481N/K483Q mutation at glycine binding site of NMDA ionotropic glutamate receptors: a molecular dynamics study.
    Blaise MC; Bhattacharyya D; Sowdhamini R; Pradhan N
    J Biomol Struct Dyn; 2005 Feb; 22(4):399-410. PubMed ID: 15588104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-binding residues integrate affinity and efficacy in the NMDA receptor.
    Kalbaugh TL; VanDongen HM; VanDongen AM
    Mol Pharmacol; 2004 Aug; 66(2):209-19. PubMed ID: 15266011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NR1 M3 domain mediates allosteric coupling in the N-methyl-D-aspartate receptor.
    Blanke ML; VanDongen AM
    Mol Pharmacol; 2008 Aug; 74(2):454-65. PubMed ID: 18483226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis.
    Hansen KB; Clausen RP; Bjerrum EJ; Bechmann C; Greenwood JR; Christensen C; Kristensen JL; Egebjerg J; Bräuner-Osborne H
    Mol Pharmacol; 2005 Dec; 68(6):1510-23. PubMed ID: 16131614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method.
    Thomas CG; Krupp JJ; Bagley EE; Bauzon R; Heinemann SF; Vissel B; Westbrook GL
    Mol Pharmacol; 2006 Apr; 69(4):1296-303. PubMed ID: 16377766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.
    Inanobe A; Furukawa H; Gouaux E
    Neuron; 2005 Jul; 47(1):71-84. PubMed ID: 15996549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids.
    Waku T; Shiraki T; Oyama T; Fujimoto Y; Maebara K; Kamiya N; Jingami H; Morikawa K
    J Mol Biol; 2009 Jan; 385(1):188-99. PubMed ID: 18977231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors.
    Muto T; Tsuchiya D; Morikawa K; Jingami H
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3759-64. PubMed ID: 17360426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide bonds determine growth hormone receptor folding, dimerisation and ligand binding.
    van den Eijnden MJ; Lahaye LL; Strous GJ
    J Cell Sci; 2006 Aug; 119(Pt 15):3078-86. PubMed ID: 16820415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of protein conformational states by normal-mode frequencies.
    Hall BA; Kaye SL; Pang A; Perera R; Biggin PC
    J Am Chem Soc; 2007 Sep; 129(37):11394-401. PubMed ID: 17715919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond.
    Fu X; Zhu BT
    Arch Biochem Biophys; 2009 May; 485(1):1-9. PubMed ID: 19150607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity.
    Lopez-Atalaya JP; Roussel BD; Levrat D; Parcq J; Nicole O; Hommet Y; Benchenane K; Castel H; Leprince J; To Van D; Bureau R; Rault S; Vaudry H; Petersen KU; Santos JS; Ali C; Vivien D
    J Cereb Blood Flow Metab; 2008 Jun; 28(6):1212-21. PubMed ID: 18334994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence.
    Hariharan R; Pillai MR
    Proteins; 2008 Jun; 71(4):1853-62. PubMed ID: 18175316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural change and receptor binding in a chemokine mutant with a rearranged disulfide: X-ray structure of E38C/C50AIL-8 at 2 A resolution.
    Eigenbrot C; Lowman HB; Chee L; Artis DR
    Proteins; 1997 Apr; 27(4):556-66. PubMed ID: 9141135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigid body essential X-ray crystallography: distinguishing the bend and twist of glutamate receptor ligand binding domains.
    Bjerrum EJ; Biggin PC
    Proteins; 2008 Jul; 72(1):434-46. PubMed ID: 18214958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology.
    Dickinson R; Peterson BK; Banks P; Simillis C; Martin JC; Valenzuela CA; Maze M; Franks NP
    Anesthesiology; 2007 Nov; 107(5):756-67. PubMed ID: 18073551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.