These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17269673)

  • 1. Modeling of purification operations in biotechnology: enabling process development, optimization, and scale-up.
    Velayudhan A; Menon MK
    Biotechnol Prog; 2007; 23(1):68-73. PubMed ID: 17269673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in primary recovery: centrifugation and membrane technology.
    Roush DJ; Lu Y
    Biotechnol Prog; 2008; 24(3):488-95. PubMed ID: 18410157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very large scale monoclonal antibody purification: the case for conventional unit operations.
    Kelley B
    Biotechnol Prog; 2007; 23(5):995-1008. PubMed ID: 17887772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-based techniques for the separation and purification of proteins: an overview.
    Saxena A; Tripathi BP; Kumar M; Shahi VK
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):1-22. PubMed ID: 18774120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioseparations.
    Lightfoot EN; Moscariello JS
    Biotechnol Bioeng; 2004 Aug; 87(3):259-73. PubMed ID: 15281101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance modeling and simulation of biochemical process sequences with interacting unit operations.
    Groep ME; Gregory ME; Kershenbaum LS; Bogle ID
    Biotechnol Bioeng; 2000 Feb; 67(3):300-11. PubMed ID: 10620260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of ideal membrane cascades for downstream processing.
    Lightfoot EN; Root TW; O'Dell JL
    Biotechnol Prog; 2008; 24(3):599-605. PubMed ID: 18410154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal.
    Rao RS; Kumar CG; Prakasham RS; Hobbs PJ
    Biotechnol J; 2008 Apr; 3(4):510-23. PubMed ID: 18320563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography.
    Rathore AS; Yu M; Yeboah S; Sharma A
    Biotechnol Bioeng; 2008 Jun; 100(2):306-16. PubMed ID: 18078292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MINLP models for the synthesis of optimal peptide tags and downstream protein processing.
    Simeonidis E; Pinto JM; Lienqueo ME; Tsoka S; Papageorgiou LG
    Biotechnol Prog; 2005; 21(3):875-84. PubMed ID: 15932268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision-support software for the industrial-scale chromatographic purification of antibodies.
    Chhatre S; Thillaivinayagalingam P; Francis R; Titchener-Hooker NJ; Newcombe AR; Keshavarz-Moore E
    Biotechnol Prog; 2007; 23(4):888-94. PubMed ID: 17630695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra scale-down approach for the prediction of full-scale recovery of ovine polycolonal immunoglobulins used in the manufacture of snake venom-specific Fab fragment.
    Neal G; Christie J; Keshavarz-Moore E; Shamlou PA
    Biotechnol Bioeng; 2003 Jan; 81(2):149-57. PubMed ID: 12451551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the performance of chromatographic columns in protein purification processes.
    Mao QM; Prince IG; Hearn MT
    Australas Biotechnol; 1992 Apr; 2(2):112-6. PubMed ID: 1368922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal synthesis of protein purification processes.
    Vásquez-Alvarez E; Lienqueo ME; Pinto JM
    Biotechnol Prog; 2001; 17(4):685-96. PubMed ID: 11485430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying process tradeoffs in the operation of chromatographic sequences.
    Ngiam SH; Bracewell DG; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2003; 19(4):1315-22. PubMed ID: 12892496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precipitation of RNA impurities with high salt in a plasmid DNA purification process: use of experimental design to determine reaction conditions.
    Eon-Duval A; Gumbs K; Ellett C
    Biotechnol Bioeng; 2003 Sep; 83(5):544-53. PubMed ID: 12827696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of bioseparations: giving credit where credit is due.
    Haynes C
    Biotechnol Bioeng; 2004 Aug; 87(3):257-8. PubMed ID: 15281100
    [No Abstract]   [Full Text] [Related]  

  • 18. Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production.
    Takors R
    Biotechnol Prog; 2004; 20(1):57-64. PubMed ID: 14763824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-down of continuous filtration for rapid bioprocess design: Recovery and dewatering of protein precipitate suspensions.
    Reynolds T; Boychyn M; Sanderson T; Bulmer M; More J; Hoare M
    Biotechnol Bioeng; 2003 Aug; 83(4):454-64. PubMed ID: 12800139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial perspective on validation of tangential flow filtration in biopharmaceutical applications. Technical Report No. 15. Parenteral Drug Association. Biotechnology Task Force on Purification and Scale-up.
    J Parenter Sci Technol; 1992; 46 Suppl 1():S1-13. PubMed ID: 1432457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.