BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17269692)

  • 81. Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor.
    Trabelsi K; Rourou S; Loukil H; Majoul S; Kallel H
    J Biotechnol; 2006 Jan; 121(2):261-71. PubMed ID: 16153733
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.
    Zhang Y; Stobbe P; Silvander CO; Chotteau V
    J Biotechnol; 2015 Nov; 213():28-41. PubMed ID: 26211737
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Optimization in hybridoma cell culture.
    Zhang Y; Fong W; Yung P
    Chin J Biotechnol; 1998; 14(3):187-93. PubMed ID: 10503079
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems.
    Smelko JP; Wiltberger KR; Hickman EF; Morris BJ; Blackburn TJ; Ryll T
    Biotechnol Prog; 2011; 27(5):1358-64. PubMed ID: 21626722
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Selective recycle of viable animal cells by coupling of airlift reactor and cell settler.
    Hülscher M; Scheibler U; Onken U
    Biotechnol Bioeng; 1992 Feb; 39(4):442-6. PubMed ID: 18600965
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Improving performance of mammalian cells in fed-batch processes through "bioreactor evolution".
    Prentice HL; Ehrenfels BN; Sisk WP
    Biotechnol Prog; 2007; 23(2):458-64. PubMed ID: 17311405
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental and modelling study of different process modes for retroviral production in a fixed bed reactor.
    Nehring D; Gonzalez R; Pörtner R; Czermak P
    J Biotechnol; 2006 Mar; 122(2):239-53. PubMed ID: 16298006
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Continuous hybridoma bioreactor: sensitivity analysis and optimal control.
    Lavric V; Ofiţeru ID; Woinaroschy A
    Biotechnol Appl Biochem; 2006 May; 44(Pt 2):81-92. PubMed ID: 16409168
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture.
    Hanson MA; Ge X; Kostov Y; Brorson KA; Moreira AR; Rao G
    Biotechnol Bioeng; 2007 Jul; 97(4):833-41. PubMed ID: 17216654
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Enhanced productivity of NS0 cells in fed-batch culture with cholesterol nanoparticle supplementation.
    Wu Y; Ma N; Wyslouzil BE; Chalmers JJ; McCormick E; Casnocha SA
    Biotechnol Prog; 2011; 27(3):796-802. PubMed ID: 21509955
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Monoclonal antibody process development using medium concentrates.
    Bibila TA; Ranucci CS; Glazomitsky K; Buckland BC; Aunins JG
    Biotechnol Prog; 1994; 10(1):87-96. PubMed ID: 7764531
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Hybridoma growth and antibody production as a function of cell density and specific growth rate in perfusion culture.
    Banik GG; Heath CA
    Biotechnol Bioeng; 1995 Nov; 48(3):289-300. PubMed ID: 18623488
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm.
    Marteijn RC; Jurrius O; Dhont J; de Gooijer CD; Tramper J; Martens DE
    Biotechnol Bioeng; 2003 Feb; 81(3):269-78. PubMed ID: 12474249
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Insights into adenoviral vector production kinetics in acoustic filter-based perfusion cultures.
    Henry O; Dormond E; Perrier M; Kamen A
    Biotechnol Bioeng; 2004 Jun; 86(7):765-74. PubMed ID: 15162452
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Novel cholesterol feeding strategy enables a high-density cultivation of cholesterol-dependent NS0 cells in linear low-density polyethylene-based disposable bioreactors.
    Tao Y; Yusuf-Makagiansar H; Shih J; Ryll T; Sinacore M
    Biotechnol Lett; 2012 Aug; 34(8):1453-8. PubMed ID: 22481299
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A computer-aided approach to compare the production economics of fed-batch and perfusion culture under uncertainty.
    Lim AC; Washbrook J; Titchener-Hooker NJ; Farid SS
    Biotechnol Bioeng; 2006 Mar; 93(4):687-97. PubMed ID: 16259001
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes.
    Vermasvuori R; Hurme M
    Biotechnol Prog; 2011; 27(6):1588-98. PubMed ID: 21954092
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.
    Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK
    Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Application of porous glycosaminoglycan-based scaffolds for expansion of human cord blood stem cells in perfusion culture.
    Cho CH; Eliason JF; Matthew HW
    J Biomed Mater Res A; 2008 Jul; 86(1):98-107. PubMed ID: 17941019
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities.
    Padawer I; Ling WL; Bai Y
    Biotechnol Prog; 2013; 29(3):829-32. PubMed ID: 23596148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.