These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. Zinder SH; Elias AF J Bacteriol; 1985 Jul; 163(1):317-23. PubMed ID: 4008444 [TBL] [Abstract][Full Text] [Related]
23. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans. Schöne C; Poehlein A; Rother M Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168 [TBL] [Abstract][Full Text] [Related]
24. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Rother M; Oelgeschläger E; Metcalf WM Arch Microbiol; 2007 Nov; 188(5):463-72. PubMed ID: 17554525 [TBL] [Abstract][Full Text] [Related]
25. An engineered methanogenic pathway derived from the domains Bacteria and Archaea. Lessner DJ; Lhu L; Wahal CS; Ferry JG mBio; 2010 Nov; 1(5):. PubMed ID: 21060738 [TBL] [Abstract][Full Text] [Related]
26. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192 [TBL] [Abstract][Full Text] [Related]
27. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. Jablonski PE; DiMarco AA; Bobik TA; Cabell MC; Ferry JG J Bacteriol; 1990 Mar; 172(3):1271-5. PubMed ID: 2307649 [TBL] [Abstract][Full Text] [Related]
28. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Rother M; Metcalf WW Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16929-34. PubMed ID: 15550538 [TBL] [Abstract][Full Text] [Related]
30. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea. Duszenko N; Buan NR Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268 [TBL] [Abstract][Full Text] [Related]
31. Development of a plasmid-mediated reporter system for in vivo monitoring of gene expression in the archaeon Methanosarcina acetivorans. Apolinario EE; Jackson KM; Sowers KR Appl Environ Microbiol; 2005 Aug; 71(8):4914-8. PubMed ID: 16085896 [TBL] [Abstract][Full Text] [Related]
32. Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri. Yeliseev A; Gärtner P; Harms U; Linder D; Thauer RK Arch Microbiol; 1993; 159(6):530-6. PubMed ID: 8352643 [TBL] [Abstract][Full Text] [Related]
33. Structure and function of an unusual flavodoxin from the domain Prakash D; Iyer PR; Suharti S; Walters KA; Santiago-Martinez MG; Golbeck JH; Murakami KS; Ferry JG Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25917-25922. PubMed ID: 31801875 [TBL] [Abstract][Full Text] [Related]
34. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. Rother M; Boccazzi P; Bose A; Pritchett MA; Metcalf WW J Bacteriol; 2005 Aug; 187(16):5552-9. PubMed ID: 16077099 [TBL] [Abstract][Full Text] [Related]
35. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Oelgeschläger E; Rother M Mol Microbiol; 2009 Jun; 72(5):1260-72. PubMed ID: 19432805 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. Peterson JR; Thor S; Kohler L; Kohler PR; Metcalf WW; Luthey-Schulten Z BMC Genomics; 2016 Nov; 17(1):924. PubMed ID: 27852217 [TBL] [Abstract][Full Text] [Related]
37. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Smith MR; Mah RA Appl Environ Microbiol; 1978 Dec; 36(6):870-9. PubMed ID: 216307 [TBL] [Abstract][Full Text] [Related]
38. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production. Catlett JL; Ortiz AM; Buan NR Appl Environ Microbiol; 2015 Oct; 81(19):6528-37. PubMed ID: 26162885 [TBL] [Abstract][Full Text] [Related]
39. Reducing the genetic code induces massive rearrangement of the proteome. O'Donoghue P; Prat L; Kucklick M; Schäfer JG; Riedel K; Rinehart J; Söll D; Heinemann IU Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17206-11. PubMed ID: 25404328 [TBL] [Abstract][Full Text] [Related]
40. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. Deppenmeier U; Johann A; Hartsch T; Merkl R; Schmitz RA; Martinez-Arias R; Henne A; Wiezer A; Bäumer S; Jacobi C; Brüggemann H; Lienard T; Christmann A; Bömeke M; Steckel S; Bhattacharyya A; Lykidis A; Overbeek R; Klenk HP; Gunsalus RP; Fritz HJ; Gottschalk G J Mol Microbiol Biotechnol; 2002 Jul; 4(4):453-61. PubMed ID: 12125824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]