These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 17270483)
1. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Majumder S; Roychowdhury A; Pal S Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483 [TBL] [Abstract][Full Text] [Related]
2. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. Majumder S; Roychowdhury A; Pal S J Biomech; 2008 Sep; 41(13):2834-42. PubMed ID: 18718597 [TBL] [Abstract][Full Text] [Related]
3. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. Bouxsein ML; Szulc P; Munoz F; Thrall E; Sornay-Rendu E; Delmas PD J Bone Miner Res; 2007 Jun; 22(6):825-31. PubMed ID: 17352651 [TBL] [Abstract][Full Text] [Related]
4. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Majumder S; Roychowdhury A; Pal S Clin Biomech (Bristol); 2013; 28(9-10):1034-40. PubMed ID: 24139746 [TBL] [Abstract][Full Text] [Related]
5. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold: an in vitro biomechanical study under falling conditions of the elderly. Parkkari J; Kannus P; Heikkilä J; Poutala J; Sievänen H; Vuori I J Bone Miner Res; 1995 Oct; 10(10):1437-42. PubMed ID: 8686498 [TBL] [Abstract][Full Text] [Related]
6. Force attenuation in trochanteric soft tissues during impact from a fall. Robinovitch SN; McMahon TA; Hayes WC J Orthop Res; 1995 Nov; 13(6):956-62. PubMed ID: 8544034 [TBL] [Abstract][Full Text] [Related]
7. Strategies for avoiding hip impact during sideways falls. Robinovitch SN; Inkster L; Maurer J; Warnick B J Bone Miner Res; 2003 Jul; 18(7):1267-73. PubMed ID: 12854837 [TBL] [Abstract][Full Text] [Related]
8. Study of stress variations in single-stance and sideways fall using image-based finite element analysis. Faisal TR; Luo Y Biomed Mater Eng; 2016 May; 27(1):1-14. PubMed ID: 27175463 [TBL] [Abstract][Full Text] [Related]
9. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex. Majumder S; Roychowdhury A; Pal S J Biomech; 2009 Jul; 42(10):1475-1482. PubMed ID: 19560148 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the effective stiffness of the pelvis during sideways falls on the hip. Laing AC; Robinovitch SN J Biomech; 2010 Jul; 43(10):1898-904. PubMed ID: 20398905 [TBL] [Abstract][Full Text] [Related]
11. Finite element analysis of hip fracture risk in elderly female: The effects of soft tissue shape, fall direction, and interventions. Murakami S; Zhao Y; Mizuno K; Yamada M; Yokoyama Y; Yamada Y; Jinzaki M J Biomech; 2024 Jul; 172():112199. PubMed ID: 38959821 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical comparison of hard and soft hip protectors, and the influence of soft tissue. van Schoor NM; van der Veen AJ; Schaap LA; Smit TH; Lips P Bone; 2006 Aug; 39(2):401-7. PubMed ID: 16546458 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical considerations of hip and spine fractures in osteoporotic bone. Hayes WC; Myers ER Instr Course Lect; 1997; 46():431-8. PubMed ID: 9143985 [TBL] [Abstract][Full Text] [Related]
14. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur]. Fan L; Wang E Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718 [TBL] [Abstract][Full Text] [Related]
15. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. Fleps I; Enns-Bray WS; Guy P; Ferguson SJ; Cripton PA; Helgason B PLoS One; 2018; 13(8):e0200952. PubMed ID: 30114192 [TBL] [Abstract][Full Text] [Related]
16. [Biomechanical evaluation of the gliding nail in trochanteric fractures]. Helwig P; Faust G; Hindenlang U; Suckel A; Kröplin B; Südkamp N Z Orthop Ihre Grenzgeb; 2006; 144(6):594-601. PubMed ID: 17187334 [TBL] [Abstract][Full Text] [Related]
17. Reducing hip fracture risk during sideways falls: evidence in young adults of the protective effects of impact to the hands and stepping. Feldman F; Robinovitch SN J Biomech; 2007; 40(12):2612-8. PubMed ID: 17395188 [TBL] [Abstract][Full Text] [Related]
18. The effect of impact direction on the structural capacity of the proximal femur during falls. Ford CM; Keaveny TM; Hayes WC J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948 [TBL] [Abstract][Full Text] [Related]
19. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. Laing AC; Robinovitch SN J Biomech Eng; 2008 Dec; 130(6):061005. PubMed ID: 19045534 [TBL] [Abstract][Full Text] [Related]
20. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study. Kannus P; Parkkari J; Poutala J Bone; 1999 Aug; 25(2):229-35. PubMed ID: 10456390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]