These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17270807)

  • 1. RET nanobiosensors using affinity of an apo-enzyme toward its substrate.
    Chinnayelka S; McShane MJ
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2599-602. PubMed ID: 17270807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer nanobiosensors based on affinity binding between apo-enzyme and its substrate.
    Chinnayelka S; McShane MJ
    Biomacromolecules; 2004; 5(5):1657-61. PubMed ID: 15360271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose sensors based on microcapsules containing an orange/red competitive binding resonance energy transfer assay.
    Chinnayelka S; McShane MJ
    Diabetes Technol Ther; 2006 Jun; 8(3):269-78. PubMed ID: 16800748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres.
    Chaudhary A; Raina M; Harma H; Hanninen P; McShane MJ; Srivastava R
    Biotechnol Bioeng; 2009 Dec; 104(6):1075-85. PubMed ID: 19655392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells.
    Chinnayelka S; McShane MJ
    J Fluoresc; 2004 Sep; 14(5):585-95. PubMed ID: 15617265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcapsule biosensors using competitive binding resonance energy transfer assays based on apoenzymes.
    Chinnayelka S; McShane MJ
    Anal Chem; 2005 Sep; 77(17):5501-11. PubMed ID: 16131059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRET-based biofriendly apo-GO(x)-modified gold nanoprobe for specific and sensitive glucose sensing and cellular imaging.
    Li L; Gao F; Ye J; Chen Z; Li Q; Gao W; Ji L; Zhang R; Tang B
    Anal Chem; 2013 Oct; 85(20):9721-7. PubMed ID: 24032474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-based biosensors for diabetic patients.
    Scognamiglio V; Staiano M; Rossi M; D'Auria S
    J Fluoresc; 2004 Sep; 14(5):491-8. PubMed ID: 15617257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy.
    Liang F; Pan T; Sevick-Muraca EM
    Photochem Photobiol; 2005; 81(6):1386-94. PubMed ID: 16120004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Affinity Mannotetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency.
    Locke AK; Cummins BM; Coté GL
    ACS Sens; 2016 May; 1(5):584-590. PubMed ID: 28529973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ; Pishko MV; Gefrides CC; McShane MJ; Coté GL
    Anal Chem; 1999 Aug; 71(15):3126-32. PubMed ID: 10450158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering glucose oxidase for bioelectrochemical applications.
    Mano N
    Bioelectrochemistry; 2019 Aug; 128():218-240. PubMed ID: 31030174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemiluminescence resonance energy transfer biosensor between the glucose functionalized MnO
    Sha H; Zhang Y; Wang Y; Ke H; Xiong X; Jia N
    Biosens Bioelectron; 2019 Jan; 124-125():59-65. PubMed ID: 30343157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs.
    Dacres H; Wang J; Dumancic MM; Trowell SC
    Anal Chem; 2010 Jan; 82(1):432-5. PubMed ID: 19957970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.
    Chen L; Tse WH; Chen Y; McDonald MW; Melling J; Zhang J
    Biosens Bioelectron; 2017 May; 91():393-399. PubMed ID: 28063388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A.
    McCartney LJ; Pickup JC; Rolinski OJ; Birch DJ
    Anal Biochem; 2001 May; 292(2):216-21. PubMed ID: 11355853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent Nanobiosensors for Sensing Glucose.
    Chen L; Hwang E; Zhang J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.
    Ge M; Bai P; Chen M; Tian J; Hu J; Zhi X; Yin H; Yin J
    Anal Bioanal Chem; 2018 Mar; 410(9):2413-2421. PubMed ID: 29455283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.