These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17270838)

  • 21. RUPERT closed loop control design.
    Zhang H; Balasubramanian S; Wei R; Austin H; Buchanan S; Herman R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3686-9. PubMed ID: 21097049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training.
    Rosenthal O; Wing AM; Wyatt JL; Punt D; Miall RC
    J Neuroeng Rehabil; 2017 Dec; 14(1):127. PubMed ID: 29208020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].
    Yi J; Yu H; Zhang Y; Hu X; Shi P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Dec; 32(6):1196-201. PubMed ID: 27079086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.
    Keller U; Schölch S; Albisser U; Rudhe C; Curt A; Riener R; Klamroth-Marganska V
    PLoS One; 2015; 10(5):e0126948. PubMed ID: 25996374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training.
    Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke.
    Zollo L; Gallotta E; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2011 Jun; 47(2):223-36. PubMed ID: 21445028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients.
    Daunoraviciene K; Adomaviciene A; Grigonyte A; Griškevičius J; Juocevicius A
    Technol Health Care; 2018; 26(S2):533-542. PubMed ID: 29843276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward minimum effort reaching trajectories formation in robot-based rehabilitation after stroke: an innovative guidance scheme proposition.
    Zadravec M; Matjačić Z
    Int J Rehabil Res; 2014 Sep; 37(3):256-66. PubMed ID: 24871905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.